1
|
Megha M, Mohan CC, Joy A, Unnikrishnan G, Thomas J, Haris M, Bhatt SG, Kolanthai E, Senthilkumar M. Vanadium and strontium co-doped hydroxyapatite enriched polycaprolactone matrices for effective bone tissue engineering: A synergistic approach. Int J Pharm 2024; 659:124266. [PMID: 38788971 DOI: 10.1016/j.ijpharm.2024.124266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Scientific research targeted at enhancing scaffold qualities has increased significantly during the last few decades. This emphasis frequently centres on adding different functions to scaffolds in order to increase their usefulness as instruments in the field of regenerative medicine. This study aims to investigate the efficacy of a multifunctional sustainable polymer scaffold, specifically Polycaprolactone (PCL) embedded with hydroxyapatite co-doped with vanadium and strontium (HVS), for bone tissue engineering applications. Polycaprolactone was used to fabricate the scaffold, while hydroxyapatite co-doped with vanadium and strontium (HVS) served as the nanofiller. A thorough investigation of the physicochemical and biological characteristics of the HVS nanofiller was carried out using cutting-edge techniques including Dynamic Light Scattering (DLS), and X-ray Photoelectron Spectroscopy (XPS) and in vitro cell studies. A cell viability rate of more than 70 % demonstrated that the synthesised nanofiller was cytotoxic, but in an acceptable range. The mechanical, biological, and physicochemical properties of the scaffold were extensively evaluated after the nanofiller was integrated. The water absorption characteristics of scaffold were enhanced by the addition of HVS nanofillers, leading to increased swelling, porosity, and hydrophilicity. These improvements speed up the flow of nutrients and the infiltration of cells into the scaffold. The scaffold has been shown to have important properties that stimulate bone cell activity, including better biodegradability and improved mechanical strength, which increased from 5.30 ± 0.37 to 10.58 ± 0.42 MPa. Further, its considerable antimicrobial qualities, blood-compatible nature, and capacity to promote biomineralization strengthen its appropriateness for usage in biomedical applications. Mainly, enhanced Alkaline phosphatase (ALP) activity, Alizarin Red Staining (ARS) activity, and excellent cell adhesive properties, indicating the outstanding osteogenic potential observed in rat bone marrow-derived stromal cells (rBMSC). These combined attributes highlight the pivotal role of these nanocomposite scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- M Megha
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Chandni C Mohan
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India
| | - Anjumol Joy
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India; College of Arts and Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Gayathri Unnikrishnan
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Jibu Thomas
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - M Haris
- Department of Physics, Karunya Institute of Technology and Sciences, Coimbatore, India
| | - Sarita G Bhatt
- Department of Biotechnology, Cochin University of Science and Technology, Kochi, India; Inter University Centre for Nanomaterials and Devices, Cochin University of Science and Technology, Kochi, India
| | - Elayaraja Kolanthai
- Department of Materials Sciences and Engineering, Advanced Materials Processing and Analysis Centre, University of Central Florida, Orlando, FL, USA.
| | | |
Collapse
|
2
|
Bhosale SR, Bhosale RR, Dhavale RP, Kolekar GB, Shimpale VB, Anbhule PV. Nanomaterials Based Multifunctional Bioactivities of V 2O 5 and Mesoporous Carbon@V 2O 5 Composite: Preparation and Characterization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6471-6483. [PMID: 38466805 DOI: 10.1021/acs.langmuir.4c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Nanocarriers have attracted considerable interest due to their prospective applications in the delivery of anticancer medications and their distinct bioactivities. Biogenic nanostructures can be effective nanocarriers for delivering drugs as a consequence of sustainable and biodegradable biomass-derived nanostructures that perform specific functions. In this case, a vanadium oxide (V2O5) and mesoporous carbon@V2O5 (C@V) composite was developed as a possible drug delivery system, and its bioactivities, including antioxidant, antibacterial, and anticancer, were investigated. Doxorubicin (DOX), an anticancer drug, was introduced to the nanoparticles, and the loading and release investigation was conducted. Strong interfacial interactions between mesoporous carbon (MC) and V2O5 nanostructures have been found to improve performance in drug loading and release studies and bioactivities. After incubation, the potent anticancer effectiveness was seen based on C@V nanocomposite. This sample was also utilized to research potential biomedical uses as an antioxidant, antibacterial, and anticancer. The most effective antioxidant, the C@V sample (61.2%), exhibited a higher antioxidant activity than the V-2 sample (44.61%). The C@V sample ultimately attained a high DOX loading efficacy of 88%, in comparison to a pure V2O5 sample (V-2) loading efficacy of 80%. Due to the combination of mesoporous carbon and V2O5, which increases specific surface area and surface sites of action as well as the morphology, it proved that the mesoporous carbon@V2O5 composite (C@V) sample demonstrated greater efficacy.
Collapse
Affiliation(s)
- Sneha R Bhosale
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Rakhee R Bhosale
- Analytical Chemistry and Material Science Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Rushikesh P Dhavale
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, South Korea
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| | - Vinod B Shimpale
- Department of Botany, The New College Kolhapur, Kolhapur 416012, Maharashtra, India
| | - Prashant V Anbhule
- Medicinal Chemistry Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur 416004, Maharashtra, India
| |
Collapse
|
3
|
Racolta D, Andronache C, Balasoiu M, Mihaly-Cozmuta L, Sikolenko V, Orelovich O, Rogachev A, Borodi G, Iepure G. Influence of the Structure on Magnetic Properties of Calcium-Phosphate Systems Doped with Iron and Vanadium Ions. Int J Mol Sci 2023; 24:ijms24087366. [PMID: 37108531 PMCID: PMC10138750 DOI: 10.3390/ijms24087366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to prepare and characterize the glasses made of x(Fe2O3∙V2O5)∙(100 - x)[P2O5∙CaO] with x ranging of 0-50%. The contribution of Fe2O3 and V2O5 amount on the structure of P2O5·CaO matrix was investigated. The vitreous materials were characterized by XRD (X-ray diffraction analysis), EPR (Electron Paramagnetic Resonance) spectroscopy, and magnetic susceptibility measurements. A hyperfine structure typical for isolated V4+ ions was noticed to all spectra containing low amount of V2O5. The XRD spectra show the amorphous nature of samples, apart x = 50%. An overlap of the EPR spectrum of a broad line without the hyperfine structure characteristic of clustered ions was observed with increasing V2O5 content. The results of magnetic susceptibility measurements explain the antiferromagnetic or ferromagnetic interactions expressed between the iron and vanadium ions in the investigated glass.
Collapse
Affiliation(s)
- Dania Racolta
- Faculty of Sciences, North University Center Baia Mare, Technical University of Cluj Napoca, 430122 Baia Mare, Romania
| | - Constantin Andronache
- Faculty of Sciences, North University Center Baia Mare, Technical University of Cluj Napoca, 430122 Baia Mare, Romania
| | - Maria Balasoiu
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- Horia Hulubei National Institute of Physics and Nuclear Engineering, 077125 Magurele, Romania
- R&D CSMBA, Faculty of Physics, West University of Timisoara, 300223 Timișoara, Romania
| | - Leonard Mihaly-Cozmuta
- Faculty of Sciences, North University Center Baia Mare, Technical University of Cluj Napoca, 430122 Baia Mare, Romania
| | - Vadim Sikolenko
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
- REC "Functional Materials", Immanuel Kant Baltic Federal University, Kaliningrad 236016, Russia
| | - Oleg Orelovich
- Joint Institute for Nuclear Research, Dubna 141980, Russia
| | - Andrey Rogachev
- Joint Institute for Nuclear Research, Dubna 141980, Russia
- Moscow Institute of Physics and Technology, Dolgoprudniy 141701, Russia
| | - Gheorghe Borodi
- National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Gheorghe Iepure
- Faculty of Sciences, North University Center Baia Mare, Technical University of Cluj Napoca, 430122 Baia Mare, Romania
| |
Collapse
|
4
|
Murakami HA, Uslan C, Haase AA, Koehn JT, Vieira AP, Gaebler DJ, Hagan J, Beuning CN, Proschogo N, Levina A, Lay PA, Crans DC. Vanadium Chloro-Substituted Schiff Base Catecholate Complexes are Reducible, Lipophilic, Water Stable, and Have Anticancer Activities. Inorg Chem 2022; 61:20757-20773. [PMID: 36519680 DOI: 10.1021/acs.inorgchem.2c02557] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A hydrophobic Schiff base catecholate vanadium complex was recently discovered to have anticancer properties superior to cisplatin and suited for intratumoral administration. This [VO(HSHED)(DTB)] complex, where HSHED is N-(salicylideneaminato)-N'-(2-hydroxyethyl)-1,2-ethanediamine and the non-innocent catecholato ligand is di-t-butylcatecholato (DTB), has higher stability compared to simpler catecholato complexes. Three new chloro-substituted Schiff base complexes of vanadium(V) with substituted catecholates as co-ligands were synthesized for comparison with their non-chlorinated Schiff base vanadium complexes, and their properties were characterized. Up to four geometric isomers for each complex were identified in organic solvents using 51V and 1H NMR spectroscopies. Spectroscopy was used to characterize the structure of the major isomer in solution and to demonstrate that the observed isomers are exchanged in solution. All three chloro-substituted Schiff base vanadium(V) complexes with substituted catecholates were also characterized by UV-vis spectroscopy, mass spectrometry, and electrochemistry. Upon testing in human glioblastoma multiforme (T98g) cells as an in vitro model of brain gliomas, the most sterically hindered, hydrophobic, and stable compound [t1/2 (298 K) = 15 min in cell medium] was better than the two other complexes (IC50 = 4.1 ± 0.5 μM DTB, 34 ± 7 μM 3-MeCat, and 19 ± 2 μM Cat). Furthermore, upon aging, the complexes formed less toxic decomposition products (IC50 = 9 ± 1 μM DTB, 18 ± 3 μM 3-MeCat, and 8.1 ± 0.6 μM Cat). The vanadium complexes with the chloro-substituted Schiff base were more hydrophobic, more hydrolytically stable, more easily reduced compared to their corresponding parent counterparts, and the most sterically hindered complex of this series is only the second non-innocent vanadium Schiff base complex with a potent in vitro anticancer activity that is an order of magnitude more potent than cisplatin under the same conditions.
Collapse
Affiliation(s)
- Heide A Murakami
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Canan Uslan
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Allison A Haase
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan T Koehn
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Adriana Pires Vieira
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - D Jackson Gaebler
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - John Hagan
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Cheryle N Beuning
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nicholas Proschogo
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Aviva Levina
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Peter A Lay
- School of Chemistry, The University of Sydney, Sydney 2006, New South Wales, Australia.,Sydney Analytical, The University of Sydney, Sydney 2006, New South Wales, Australia
| | - Debbie C Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|