1
|
Noor T, Waqas M, Shaban M, Hameed S, Ateeq-ur-Rehman, Ahmed SB, Alrafai HA, Al-Saeedi SI, Ibrahim MAA, Hadia NMA, Khera RA, Hassan AA. Designing Thieno[3,4- c]pyrrole-4,6-dione Core-Based, A 2-D-A 1-D-A 2-Type Acceptor Molecules for Promising Photovoltaic Parameters in Organic Photovoltaic Cells. ACS OMEGA 2024; 9:6403-6422. [PMID: 38375499 PMCID: PMC10876087 DOI: 10.1021/acsomega.3c04970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Nonfullerene-based organic solar cells can be utilized as favorable photovoltaic and optoelectronic devices due to their enhanced life span and efficiency. In this research, seven new molecules were designed to improve the working efficiency of organic solar cells by utilizing a terminal acceptor modification approach. The perceived A2-D-A1-D-A2 configuration-based molecules possess a lower band gap ranging from 1.95 to 2.21 eV compared to the pre-existing reference molecule (RW), which has a band gap of 2.23 eV. The modified molecules also exhibit higher λmax values ranging from 672 to 768 nm in the gaseous and 715-839 nm in solvent phases, respectively, as compared to the (RW) molecule, which has λmax values at 673 and 719 nm in gas and chloroform medium, respectively. The ground state geometries, molecular planarity parameter, and span of deviation from the plane were analyzed to study the planarity of all of the molecules. The natural transition orbitals, the density of state, molecular electrostatic potential, noncovalent interactions, frontier molecular orbitals, and transition density matrix analysis of all studied molecules were executed to validate the optoelectronic properties of these molecules. Improved charge mobilities and dipole moments were observed, as newly designed molecules possessed lower internal reorganization energies. The open circuit voltage (Voc) of W4, W5, W6, and W7 among newly designed molecules was improved as compared to the reference molecule. These results elaborate on the superiority of these novel-designed molecules over the pre-existing (RW) molecule as potential blocks for better organic solar cell applications.
Collapse
Affiliation(s)
- Tanzeela Noor
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Shanza Hameed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Ateeq-ur-Rehman
- Department
of Physics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Samia Ben Ahmed
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - H. A. Alrafai
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 2014, Al-Jouf, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Abeer A. Hassan
- Departement
of Chemistry, College of Science, King Khalid
University, P.O. Box 9004, Abha 61421, Saudi Arabia
- Department
of chemistry, Faculty of science for Girls, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
2
|
Zubair H, Akhter MS, Waqas M, Ishtiaq M, Bhatti IA, Iqbal J, Skawky AM, Khera RA. A computational insight into enhancement of photovoltaic properties of non-fullerene acceptors by end-group modulations in the structural framework of INPIC molecule. J Mol Graph Model 2024; 126:108664. [PMID: 37948853 DOI: 10.1016/j.jmgm.2023.108664] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
Improving the open circuit voltage is a major challenge for enhancing the overall efficiency of organic solar cells. Current work has concentrated on improving open-circuit voltage by designing new molecular frameworks from an INPIC molecule having a conjugated fused core. We modulated the structure by changing the terminal groups of the reference molecule (INPIC) with seven strong electron-withdrawing units. We investigated various optoelectronic attributes, charge transfer, and photovoltaic and geometrical parameters by compiling the B3LYP/6-31G(d,p) functional of the DFT approach. The optical absorption for modulated molecules ranges from 748.51 nm to 845.96 nm while showing higher oscillation strength than INPIC. At the same time, their impressive charge transport is attributed to their smaller excitation and exciton binding energy, higher electron/hole mobility, narrower band gap, and a more than 99 % intramolecular charge transfer. The larger dipole moments help in the dense interaction of acceptors with employed donor J61 which, in turn, improves charge transfer at the donor-acceptor interface. One of the triumphs that are difficult to get in organic molecules is success in achieving a higher open circuit voltage (VOC). Our conceptualized molecular frameworks of acceptors are featured with a notable VOC improvement in the range of 1.84-2.05 eV. Thus, the results of the current investigation pave the root for architecting the acceptor molecules with impressive optoelectrical properties that may be capable of providing high photovoltaic output. Thus these acceptors can be utilized for the development of advanced organic solar cells in future.
Collapse
Affiliation(s)
- Hira Zubair
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhamed Salim Akhter
- Department of Chemistry, College of Science, University of Bahrain, P. O. Box 32028, Bahrain.
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Mariam Ishtiaq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Skawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
3
|
Zaier R, Martel A, Antosiewicz TJ. Effect of Benzothiadiazole-Based π-Spacers on Fine-Tuning of Optoelectronic Properties of Oligothiophene-Core Donor Materials for Efficient Organic Solar Cells: A DFT Study. J Phys Chem A 2023; 127:10555-10569. [PMID: 38086177 PMCID: PMC10749456 DOI: 10.1021/acs.jpca.3c04866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/22/2023]
Abstract
In this work, five novel A-π-D-π-A type molecules D1-D5 were designed by adding unusual benzothiadiazole derivatives as π-spacer blocks to the efficient reference molecule DRCN5T for application as donor materials in organic solar cells (OSCs). Based on a density functional theory approach, a comprehensive theoretical study was performed with different functionals (B3LYP, B3LYP-GD3, B3LYP-GD3BJ, CAM-B3LYP, M06, M062X, and wB97XD) and with different solvent types (PCM and SMD) at the extended basis set 6-311+g(d,p) to evaluate the structural, optoelectronic, and intramolecular charge transfer properties of these molecules. The B3LYP-GD3BJ hybrid functional was used to optimize the studied molecules in CHCl3 solution with the SMD model solvent as it provided the best results compared to experimental data. Transition density matrix maps were simulated to examine the hole-electron localization and the electronic excitation processes in the excited state, and photovoltaic parameters including open-circuit photovoltage and fill factor were investigated to predict the efficiency of these materials. All the designed materials showed promising optoelectronic and photovoltaic characteristics, and for most of them, a red shift. Out of the proposed molecules, [1,2,5]thiadiazolo[3,4-d]pyridazine was selected as a promising π-spacer block to evaluate its interaction with PC61BM in a composite to understand the charge transfer between the donor and acceptor subparts. Overall, this study showed that adding π-spacer building blocks to the molecular structure is undoubtedly a potential strategy to further enhance the performance of donor materials for OSC applications.
Collapse
Affiliation(s)
- Rania Zaier
- Faculty
of Physics, University of Warsaw, Pasteura 5, PL-02-093 Warsaw, Poland
| | - Arnaud Martel
- Institut
des Molécules et Matériaux du Mans, UMR 6283 CNRS-Université du Maine, Avenue Olivier Messiaen, 72085 Cedex Le Mans, France
| | | |
Collapse
|
4
|
Zahoor A, Sadiq S, Khera RA, Essid M, Aloui Z, Alatawi NS, Ibrahim MAA, Hasanin THA, Waqas M. A DFT study for improving the photovoltaic performance of organic solar cells by designing symmetric non-fullerene acceptors by quantum chemical modification on pre-existed LC81 molecule. J Mol Graph Model 2023; 125:108613. [PMID: 37659133 DOI: 10.1016/j.jmgm.2023.108613] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Minimizing the energy loss and improving the open circuit voltage of organic solar cells is still a primary concern for scientists working in this field. With the aim to enhance the photovoltaic performance of organic solar cells by minimizing energy loss and improving open circuit voltage, seven new acceptor molecules (LC1-LC7) are presented in this work. These molecules are designed by modifying the terminal acceptors of pre-existed "LC81" molecule based on an indacinodithiophene (IDT) fused core. The end-group modification approach is very fruitful in ameliorating the efficacy and optoelectric behavior of OSCs. The newly developed molecules presented remarkable improvements in performance-related parameters and optoelectronic properties. Among all designed molecules, LC7 exhibited the highest absorption maxima (λmax = 869 nm) with the lowest band-gap (1.79 eV), lowest excitation energy (Ex = 1.42 eV), lowest binding energy, and highest excited state lifetime (0.41 ns). The newly designed molecules LC2, LC3, and LC4 exhibited remarkably improved Voc that was 1.84 eV, 1.82 eV, and 1.79 eV accordingly, compared to the LC81 molecule with Voc of 1.74 eV LC2 molecule showed significant improvement in fill factor compared to the previously presented LC81 molecule. LC2, LC6, and LC7 showed a remarkable reduction in energy loss by showing Eloss values of 0.26 eV, 0.18 eV, and 0.25 eV than LC81 molecule (0.37 eV). These findings validate the supremacy of these developed molecules (especially LC2) as potential components of future OSCs.
Collapse
Affiliation(s)
- Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Tamer H A Hasanin
- Department of Chemistry, College of Science, Jouf University, Sakaka, P.O. Box 2014, Saudi Arabia
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
5
|
Khanam S, Akram SJ, Khera RA, Zohra ST, Shawky AM, Alatawi NS, Ibrahim MAA, Rashid EU. Exploration of charge transfer analysis and photovoltaics properties of A-D-A type non-fullerene phenazine based molecules to enhance the organic solar cell properties. J Mol Graph Model 2023; 125:108580. [PMID: 37544020 DOI: 10.1016/j.jmgm.2023.108580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
To intensify the photovoltaic properties of organic solar cells, density functional theory (DFT) based computational techniques were implemented on six non-fullerene A-D-A type small molecules (N1-N6) modified from reference molecule (R) which consists of phenazine fused with 1,4- Dimethyl-4H-3,7-dithia-4-aza- cyclopenta [α] pentalene on both sides with one of its phenyl rings acting as the central donor unit, further attached with 2-(5,6-Difluoro-2-methylene-3-oxo-indan-1-ylidene)-malononitrile acceptor groups at terminal sites. All proposed compounds have a phenazine base modified with a variety of substituents at the terminals. Transition density matrix, density of states, frontier molecular orbitals, intramolecular charge transfer abilities and optoelectronic properties of these compounds were investigated using B3LYP/6-31G (d, p) and B3LYP/6-31G++ (d,p) level of theory. All six designed compounds exhibited a bathochromic sift in their λmax as compared to the R molecule. All designed molecules also have reduced band gap and smaller excitation energy than R. Among all, N6 exhibited highest λmax and lowest bandgap as compared to reference molecule indicating its promising photovoltaic properties. Decreased hole and electron reorganization energy in several of the suggested compounds is indicative of greater charge mobility in them. PTB7-Th donor was employed to calculate open circuit voltage of all investigated molecules. N1-N5 molecules had improved optoelectronic properties, significant probable power conversion efficiency as evident from their absorption aspects, high values of Voc, and fill factor, compared to R molecule. Designed A-D-A type NF based molecules make OSCs ideal for use in wearable devices, building-integrated photovoltaics and smart fabrics.
Collapse
Affiliation(s)
- Sabiha Khanam
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan; Theoretical Physics IV, University of Bayreuth, Universität straße 30, 95447, Bayreuth, Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sadia Tul Zohra
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Chemistry Department, Faculty of Science, Minia University, Minia, 61519, Egypt; School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4000, South Africa
| | - Ehsan Ullah Rashid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
6
|
Rehman F, Waqas M, Imran M, Ibrahim MAA, Iqbal J, Khera RA, Hadia NMA, Al-Saeedi SI, Shaban M. Approach toward Low Energy Loss in Symmetrical Nonfullerene Acceptor Molecules Inspired by Insertion of Different π-Spacers for Developing Efficient Organic Solar Cells. ACS OMEGA 2023; 8:43792-43812. [PMID: 38027352 PMCID: PMC10666235 DOI: 10.1021/acsomega.3c05665] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/16/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023]
Abstract
In this quantum approach, by adding bridge/π-spacer fragments between the donor and acceptor parts of a newly constructed DF-PCIC (A-D-A type) molecule, it is the aim to improve the photovoltaic characteristics of organic solar cells (OSCs). After π-spacer insertion into the reference molecule (DF-R), six new molecules (DF-M1 to DF-M6) were designed. The optoelectronic attributes of newly inspected molecules were theoretically calculated using MPW1PW91/6-31G(d,p) level of theory. All newly proposed molecules possessed a lower band gap (Eg), a higher value of absorption, lower reorganization energy, greater dipole moment, and lower energies of excitations than the DF-R molecule. The frontier molecular orbital study proclaimed that the DF-M1 molecule has the lowest band gap of 1.62 eV in comparison to the 2.41 eV value of DF-R. Absorption properties represented that DF-M1 and DF-M2 molecules show the highest absorption values of up to 1006 and 1004 nm, respectively, in the near-infrared region. Regarding the reorganization energy, DF-M2 has the lowest value of λe (0.0683896 eV) and the lowest value of λh (0.1566471 eV). DF-M2 and DF-M5 manifested greater dipole moments with the values of 5.514665 and 7.143434 D, respectively. The open circuit voltage (VOC) of all the acceptors was calculated with J61, a donor complex. DF-M4 and DF-M6 molecules showed higher values of VOC and fill factor than the DF-R molecule. Based on the given results, it was supposed that all the newly presented molecules might prove themselves to be better than the reference and thus might be of great interest to experimentalists. Thus, they are suggested to be used to develop proficient OSC devices with improved photovoltaic prospects in the near future.
Collapse
Affiliation(s)
- Faseh
ur Rehman
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry
Department, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South Africa
| | - Javed Iqbal
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - N. M. A. Hadia
- Physics
Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Al-Jouf, Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry, Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O.Box
84428, Riyadh 11671, Saudi Arabia
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
- Nanophotonics
and Applications (NPA) Lab, Physics Department, Faculty of Science, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
7
|
Rehman F, Hameed S, Khera RA, Shaban M, Essid M, Aloui Z, Al-Saeedi SI, Ibrahim MAA, Waqas M. High-Efficiency and Low-Energy-Loss Organic Solar Cells Enabled by Tuning the End Group Modification of the Terthiophene-Based Acceptor Molecules to Enhance Photovoltaic Properties. ACS OMEGA 2023; 8:42492-42510. [PMID: 38024709 PMCID: PMC10652832 DOI: 10.1021/acsomega.3c05176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023]
Abstract
In the current study, six nonfullerene small acceptor molecules were designed by end-group modification of terminal acceptors. Density functional theory calculations of all designed molecules were performed, and optoelectronic properties were computed by employing different functionals. Every constructed molecule has a significant bathochromic shift in the maximum absorption value (λmax) except AM6. AM1-AM4 molecules represented a narrow band gap (Eg) and low excitation energy values. The AM1-AM4 and AM6 molecules have higher electron mobility. Comparing AM2 to the reference molecule reveals that AM2 has higher hole mobilities. Compared to the reference molecule, all compounds have excellent light harvesting efficiency values compared to AM1 and AM2. The natural transition orbital investigation showed that AM5 and AM6 had significant electronic transitions. The open-circuit voltage (Voc) values of the computed molecules were calculated by combining the designed acceptor molecules with PTB7-Th. In light of the findings, it is concluded that the designed molecules can be further developed for organic solar cells (OSCs) with superior photovoltaic abilities.
Collapse
Affiliation(s)
- Faseh
Ur Rehman
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shanza Hameed
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Mohamed Shaban
- Department
of Physics, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Manel Essid
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box, Abha 9004. Saudi Arabia
| | - Zouhaier Aloui
- Chemistry
Department, College of Science, King Khalid
University (KKU), P.O. Box, Abha 9004. Saudi Arabia
| | - Sameerah I. Al-Saeedi
- Department
of Chemistry. Collage of Science, Princess
Nourah Bint Abdulrahman University, P.O.
Box 84428, Riyadh 11671, Saudi Arabia
| | - Mahmoud A. A. Ibrahim
- Chemistry
Department, Faculty of Science, Minia University, Minia 61519, Egypt
- School
of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban 4000, South
Africa
| | - Muhammad Waqas
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| |
Collapse
|
8
|
Zubair H, Mahmood RF, Waqas M, Ishtiaq M, Iqbal J, Ibrahim MAA, Sayed SRM, Noor S, Khera RA. Effect of tailoring π-linkers with extended conjugation on the SJ-IC molecule for achieving high VOC and improved charge mobility towards enhanced photovoltaic applications. RSC Adv 2023; 13:26050-26068. [PMID: 37664200 PMCID: PMC10472344 DOI: 10.1039/d3ra03317a] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/05/2023] [Indexed: 09/05/2023] Open
Abstract
The problem of low efficiency of organic solar cells can be solved by improving the charge mobility and open circuit voltage of these cells. The current research aims to present the role of π-linkers, having extended conjugation, between the donor and acceptor moieties of indacenodithiophene core-based A-π-D-π-A type SJ-IC molecule to improve the photovoltaic performance of pre-existing SJ-IC. Several crucial photovoltaic parameters of SJ-IC and seven newly proposed molecules were studied using density functional theory. Surprisingly, this theoretical framework manifested that the tailoring of SJ-IC by replacing its π-linker with linkers having extended π-conjugation gives a redshift in maximum absorption coefficient in the range of 731.69-1112.86 nm in a solvent. In addition, newly designed molecules exhibited significantly narrower bandgaps (ranging from 1.33 eV to 1.93 eV) than SJ-IC having a bandgap of 2.01 eV. Similarly, newly designed molecules show significantly less excitation energy in gaseous and solvent phases than SJ-IC. Furthermore, the reorganization energies of DL1-DL7 are much lower than that of SJ-IC, indicating high charge mobility in these molecules. DL6 and DL7 have shown considerably improved open circuit voltage (VOC), reaching 1.49 eV and 1.48 eV, respectively. Thus, the modification strategy employed herein has been fruitful with productive effects, including better tuning of the energy levels, lower bandgaps, broader absorption, improved charge mobility, and increased VOC. Based on these results, it can be suggested that these newly presented molecules can be considered for practical applications in the future.
Collapse
Affiliation(s)
- Hira Zubair
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Rana Farhat Mahmood
- Department of Chemistry, Division of Science and Technology, University of Education Township Lahore 54770 Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mariam Ishtiaq
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| | - Mahmoud A A Ibrahim
- Computational Chemistry Laboratory, Chemistry Department, Faculty of Science, Minia University Minia 61519 Egypt
- School of Health Sciences, University of KwaZulu-Natal Westville Campus Durban 4000 South Africa
| | - Shaban R M Sayed
- Department of Botany and Microbiology, College of Science, King Saud University P. O. Box 2455 Riyadh 11451 Saudi Arabia
| | - Sadia Noor
- Department of Chemistry, University of Hohenheim Stuttgart 70599 Germany
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture Faisalabad 38000 Pakistan
| |
Collapse
|
9
|
Sadiq S, Waqas M, Zahoor A, Mehmood RF, Essid M, Aloui Z, Khera RA, Akram SJ. Synergistic modification of end groups in Quinoxaline fused core-based acceptor molecule to enhance its photovoltaic characteristics for superior organic solar cells. J Mol Graph Model 2023; 123:108518. [PMID: 37235903 DOI: 10.1016/j.jmgm.2023.108518] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
The competence of organic solar cells (OSCs) could be enhanced by improving the light absorption capabilities as well as the open-circuit voltage (Voc) of utilized molecules. To upgrade overall functionality of OSCs, seven new molecules were designed in this work using an end-cap alteration technique on Quinoxaline fused core-based non-fullerene acceptor (Qx-2) molecule. This technique is known to be quite advantageous in terms of improvement of the effectiveness and optoelectrical behavior of various OSCs. Critical parameters like the absorption maximum, frontier molecular orbitals, excitation energy, exciton binding energy, Voc, and fill factor of molecules were considered for the molecules thus designed. All newly designed molecules showed outstanding improvement in optoelectronic as well as performance-related properties. Out of all scrutinized molecules, Q1 exhibited highest wavelength of absorption peak (λmax = 779 nm) with the reduced band gap (1.90 eV), least excitation energy (Ex = 1.59 eV), along with the highest dipole moment (17.982950 D). Additionally, the newly designed compounds Q4, Q5, and Q6 exhibited significantly improved Vocs that were 1.55, 1.47, and 1.50 eV accordingly, as compared to the 1.37 eV of Qx-2 molecule. These molecules also showed remarkable improvement in fill factor attributed to direct correspondence of Voc with it. Inclusively, these results support the superiority of these newly developed molecules as prospective constituents of upgraded OSCs.
Collapse
Affiliation(s)
- Sonia Sadiq
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Amna Zahoor
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Rana Farhat Mehmood
- Department of Chemistry, Division of Science and Technology, University of Education, Township, Lahore, 54770, Pakistan
| | - Manel Essid
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Zouhaier Aloui
- Chemistry Department, College of Science, King Khalid University (KKU), Abha, P.O. Box 9004, Saudi Arabia
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
10
|
Hameed S, Waqas M, Zahid S, Gul S, Shawky AM, Alatawi NS, Shehzad RA, Bhatti IA, Ayub K, Iqbal J, Khera RA. Quantum Chemical Approach of Hexaammine (NH 3) 6 complexant with alkali and alkaline earth metals for their potential use as NLO materials. J Mol Graph Model 2023; 123:108505. [PMID: 37220700 DOI: 10.1016/j.jmgm.2023.108505] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/07/2023] [Accepted: 04/30/2023] [Indexed: 05/25/2023]
Abstract
In this study, nine new electron rich compounds are presented, and their electronic, geometrical, and nonlinear optical (NLO) characteristics have been investigated by using the Density functional theory. The basic design principle of these compounds is placing alkaline earth metal (AEM) inside and alkali metal (AM) outside the hexaammine complexant. The properties of nine newly designed compounds are contrasted with the reference molecule (Hexaammine). The effect of this doping on Hexaamine complexant is explored by different analyses such as electron density distribution map (EDDM), frontier molecular orbitals (FMOs), density of states (DOS) absorption maximum (λmax), hyperpolarizabilities, dipole moment, transition density matrix (TDM). Non-covalent interaction (NCI) study assisted with isosurfaces has been accomplished to explore the vibrational frequencies and types of synergy. The doping of hexaammine complexant with AM and AEM significantly improved its characteristics by reducing values of HOMO-LUMO energy gaps from 10.7eV to 3.15eV compared to 10.7 eV of hexaammine. The polarizability and hyperpolarizability (αo and βo) values inquisitively increase from 72 to 919 au and 4.31 × 10-31 to 2.00 × 10-27esu respectively. The higher values of hyperpolarizability in comparison to hexaammine (taken as a reference molecule) are credited to the presence of additional electrons. The absorption profile of the newly designed molecules clearly illustrates that they are highly accompanied by higher λmax showing maximum absorbance in red and far-red regions ranging from 654.07 nm to 783.94 nm. These newly designed compounds have superior outcomes having effectiveness for using them as proficient NLO materials and have a gateway for advanced investigation of more stable and highly progressive NLO materials.
Collapse
Affiliation(s)
- Shanza Hameed
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Waqas
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saba Zahid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shehla Gul
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Naifa S Alatawi
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71421, Saudi Arabia
| | - Rao Aqil Shehzad
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ijaz Ahmed Bhatti
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Khurshid Ayub
- Department of Chemistry, COMSAT University, Abbottabad Campus, KPK, 22060, Pakistan
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| | - Rasheed Ahmad Khera
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
11
|
Chen H, Zhang H, Du H, Kuang Y, Pang Q, Gao L, Wang W, Yang C, Song Z. Enantioselective Synthesis of 6/5-Spirosilafluorenes by Asymmetric Ring Expansion of 4/5-Spirosilafluorenes with Alkynes. Org Lett 2023; 25:1558-1563. [PMID: 36847236 DOI: 10.1021/acs.orglett.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
A rhodium-catalyzed asymmetric ring expansion of 4/5-spirosilafluorenes with terminal alkynes has been developed using sterically demanding binaphthyl phosphoramidite ligand. The reaction is not only strategically distinct from cyclization or cycloaddition but also showcases the first enantioselective synthesis of axially chiral 6/5-spirosilafluorenes.
Collapse
Affiliation(s)
- Hua Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Haixia Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Huimin Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yuzhong Kuang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qinjiao Pang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lu Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wanshu Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry & Technology, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhenlei Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Asif A, Maqsood N, Akram SJ, Nouman M, Elmushyakhi A, Shawky AM, Iqbal J. Efficient side-chain engineering of thieno-imidazole salt-based molecule to boost the optoelectronic attributes of organic solar cells: A DFT approach. J Mol Graph Model 2023; 121:108428. [PMID: 36801585 DOI: 10.1016/j.jmgm.2023.108428] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023]
Abstract
This study focused on modeling and density functional theory (DFT) analysis of reference (AI1) and designed structures (AI11-AI15), based on the thieno-imidazole core, in order to create profitable candidates for solar cells. All the optoelectronic properties of the molecular geometries were computed using DFT and time dependent-DFT approaches. The influence of terminal acceptors on the bandgaps, absorption, hole and electron mobilities, charge transfer capabilities, fill factor, dipole moment, etc. Of the recently designed structures (AI11-AI15), as well as reference (AI1), were evaluated. Optoelectronics and chemical parameters of newly architecture geometries were shown to be superior to the cited molecule. The FMOs and DOS graphs also demonstrated that the linked acceptors remarkably improved the dispersion of charge density in the geometries under study, particularly in AI11 and AI14. Calculated values of binding energy and chemical potential confirmed the thermal stability of the molecules. All the derived geometries surpassed the AI1 (Reference) molecule in terms of maximum absorbance ranging from 492 to 532 nm (in chlorobenzene solvent) and a narrower bandgap ranging from 1.76 to 1.99eV. AI15 had the lowest exciton dissociation energy of 0.22eV as well as lowest electrons and hole dissociation energies, while AI11 and AI14 showed highest VOC, fill factor, power conversion efficiency (PCE), IP and EA (owing to presence of strong electron pulling cyano (CN) moieties at their acceptor portions and extended conjugation) than all the examined molecules, implying that they could be used to build elite solar cells with enhanced photovoltaic attributes.
Collapse
Affiliation(s)
- Areeba Asif
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Nimra Maqsood
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Sahar Javaid Akram
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Muhammad Nouman
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan
| | - Abraham Elmushyakhi
- Department of Mechanical Engineering, College of Engineering, Northern Border University, Arar, Saudi Arabia
| | - Ahmed M Shawky
- Science and Technology Unit (STU), Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Javed Iqbal
- Department of Chemistry, University of Agriculture, 38000, Faisalabad, Pakistan.
| |
Collapse
|