1
|
Cabanero DC, Rovis T. Low-energy photoredox catalysis. Nat Rev Chem 2025; 9:28-45. [PMID: 39528711 DOI: 10.1038/s41570-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
Zhang H, Yuan T, Zhumabay N, Ruan Z, Qian H, Rueping M. Ketone-functionalized conjugated organic polymers boost red-light-driven molecular oxygen-mediated oxygenation. Chem Sci 2024:d4sc05816j. [PMID: 39371460 PMCID: PMC11446402 DOI: 10.1039/d4sc05816j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/24/2024] [Indexed: 10/08/2024] Open
Abstract
Photocatalytic molecular oxygen activation has emerged as a valuable tool for organic synthesis, environmental remediation and energy conversion. Most reported instances have relied on high-energy light sources. Herein, 9-fluorenone-functionalized porous organic polymers (POPs) were reported to enable red-light-excited photocatalysis for the organic oxygenation reaction. Notably, this modification extends the conjugated backbone, allowing the capture of lower-energy light. Incorporating ketone groups into POPs also facilitates charge separation and enhances carrier concentration, thereby promoting catalytic efficiency. The new POP photomaterials exhibit high activity for the direct α-oxygenation of N-substituted tetrahydroisoquinolines (THIQs) using O2 as a green oxidant under 640 nm light irradiation, achieving high yield in short reaction times. Detailed mechanistic investigations clearly showed the role of oxygen and the photocatalyst. This work provides valuable insights into the potential of ketone-modified POPs for superior photocatalytic activation of molecular oxygen under low-energy light conditions.
Collapse
Affiliation(s)
- Hao Zhang
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Tingting Yuan
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Nursaya Zhumabay
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| | - Zhipeng Ruan
- Key Laboratory of Pharmaceutical Analysis and Laboratory Medicine (Putian University), Fujian Province University 351100 Fujian China
| | - Hai Qian
- Department of Chemistry, School of Science, China Pharmaceutical University Nanjing 211198 P. R. China
| | - Magnus Rueping
- KAUST Catalysis Center, KCC, King Abdullah University of Science and Technology, KAUST Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
3
|
Okamoto S, Nagai D. Pyrene-Based Organic Photoredox Catalysts for Carbon-Carbon Bond-Forming Reactions: Reductive Coupling of Aromatic Carbonyl and Imine Compounds. Org Lett 2024; 26:7718-7722. [PMID: 39235151 DOI: 10.1021/acs.orglett.4c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Metal-free photoredox catalysts built upon a pyrene core were developed for carbon-carbon bond-forming reactions. Among these catalysts, a pyrene derivative containing a urea moiety effectively facilitated the reductive coupling of aromatic carbonyl and imine compounds under blue LED irradiation. This process provided the corresponding vicinal diols and diamines in good yields.
Collapse
Affiliation(s)
- Shusuke Okamoto
- School of Food and Nutritional Science, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| | - Daisuke Nagai
- School of Food and Nutritional Science, University of Shizuoka, Yada 52-1, Suruga-ku, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
4
|
Tu JL, Huang B. Titanium in photocatalytic organic transformations: current applications and future developments. Org Biomol Chem 2024; 22:6650-6664. [PMID: 39118484 DOI: 10.1039/d4ob01152j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Titanium, as an important transition metal, has garnered extensive attention in both industry and academia due to its excellent mechanical properties, corrosion resistance, and unique reactivity in organic synthesis. In the field of organic photocatalysis, titanium-based compounds such as titanium dioxide (TiO2), titanocenes (Cp2TiCl2, CpTiCl3), titanium tetrachloride (TiCl4), tetrakis(isopropoxy)titanium (Ti(OiPr)4), and chiral titanium complexes have demonstrated distinct reactivity and selectivity. This review focuses on the roles of these titanium compounds in photocatalytic organic reactions, and highlights the reaction pathways such as photo-induced single-electron transfer (SET) and ligand-to-metal charge transfer (LMCT). By systematically surveying the latest advancements in titanium-involved organic photocatalysis, this review aims to provide references for further research and technological innovation within this fast-developing field.
Collapse
Affiliation(s)
- Jia-Lin Tu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Binbin Huang
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519085, China.
| |
Collapse
|
5
|
Pasca F, Gelato Y, Andresini M, Romanazzi G, Degennaro L, Colella M, Luisi R. Synthesis of alcohols: streamlined C1 to C n hydroxyalkylation through photoredox catalysis. Chem Sci 2024; 15:11337-11346. [PMID: 39055000 PMCID: PMC11268494 DOI: 10.1039/d4sc02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Naturally occurring and readily available α-hydroxy carboxylic acids (AHAs) are utilized as platforms for visible light-mediated oxidative CO2-extrusion furnishing α-hydroxy radicals proved to be versatile C1 to Cn hydroxyalkylating agents. The direct decarboxylative Giese reaction (DDGR) is operationally simple, not requiring activator or sacrificial oxidants, and enables the synthesis of a diverse range of hydroxylated products, introducing connectivity typically precluded from conventional polar domains. Notably, the methodology has been extended to widely used glycolic acid resulting in a highly efficient and unprecedented C1 hydroxyhomologation tactic. The use of flow technology further facilitates scalability and adds green credentials to this synthetic methodology.
Collapse
Affiliation(s)
- Francesco Pasca
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Yuri Gelato
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Michael Andresini
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | | | - Leonardo Degennaro
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Marco Colella
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| | - Renzo Luisi
- Department of Pharmacy-Drug Sciences, Flow Chemistry and Microreactor Technology FLAME-Lab University of Bari "A. Moro" Via E. Orabona 4 70125 Bari Italy
| |
Collapse
|
6
|
Kuribara T, Kaneki A, Matsuda Y, Nemoto T. Visible-Light-Antenna Ligand-Enabled Samarium-Catalyzed Reductive Transformations. J Am Chem Soc 2024. [PMID: 39031764 DOI: 10.1021/jacs.4c05414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Although divalent Sm reagents are some of the most important single-electron transfer reagents for reductive transformations, their catalytic applications are challenging. In this study, a bidentate phosphine oxide ligand substituted with 9,10-diphenylanthracene as a visible-light antenna was designed for Sm-catalyzed reduction reactions under mild reaction conditions. Pinacol coupling of aryl ketones and aldehydes was developed with 1 mol % of Sm catalyst and organic amine (DIPEA) as a sacrificial mild reductant. Mechanistic studies suggest that the visible-light-antenna ligand coordinates to Sm(III) and reduces Sm(III) to Sm(II) under visible-light irradiation. The catalytic system is also applicable for cross-pinacol coupling and other single-electron reductive transformations, including aza-pinacol coupling, flavone dimerization, C-O bond cleavage, C-C ring-opening of cyclopropane, ketyl-olefin coupling, and cross-coupling of the ketyl radical with the α-amino radical.
Collapse
Affiliation(s)
- Takahito Kuribara
- Institute for Advanced Academic Research, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Ayahito Kaneki
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Yu Matsuda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| | - Tetsuhiro Nemoto
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba 260-8675, Japan
| |
Collapse
|
7
|
Chi Z, Liao JB, Cheng X, Ye Z, Yuan W, Lin YM, Gong L. Asymmetric Cross-Coupling of Aldehydes with Diverse Carbonyl or Iminyl Compounds by Photoredox-Mediated Cobalt Catalysis. J Am Chem Soc 2024; 146:10857-10867. [PMID: 38587540 DOI: 10.1021/jacs.4c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The asymmetric cross-coupling of unsaturated bonds, hampered by their comparable polarity and reactivity, as well as the scarcity of efficient catalytic systems capable of diastereo- and enantiocontrol, presents a significant hurdle in organic synthesis. In this study, we introduce a highly adaptable photochemical cobalt catalysis framework that facilitates chemo- and stereoselective reductive cross-couplings between common aldehydes with a broad array of carbonyl and iminyl compounds, including N-acylhydrazones, aryl ketones, aldehydes, and α-keto esters. Our methodology hinges on a synergistic mechanism driven by photoredox-induced single-electron reduction and subsequent radical-radical coupling, all precisely guided by a chiral cobalt catalyst. Various optically enriched β-amino alcohols and unsymmetrical 1,2-diol derivatives (80 examples) have been synthesized with good yields (up to 90% yield) and high stereoselectivities (up to >20:1 dr, 99% ee). Of particular note, this approach accomplishes unattainable photochemical asymmetric transformations of aldehydes with disparate carbonyl partners without reliance on any external photosensitizer, thereby further emphasizing its versatility and cost-efficiency.
Collapse
Affiliation(s)
- Zhiyong Chi
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Jia-Bin Liao
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Xiuliang Cheng
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ziqi Ye
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Wei Yuan
- Department of Pharmacy, Xiamen Medical College, Xiamen 361023, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
8
|
Fabri B, Funaioli T, Frédéric L, Elsner C, Bordignon E, Zinna F, Di Bari L, Pescitelli G, Lacour J. Triple para-Functionalized Cations and Neutral Radicals of Enantiopure Diaza[4]helicenes. J Am Chem Soc 2024; 146:8308-8319. [PMID: 38483324 DOI: 10.1021/jacs.3c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.
Collapse
Affiliation(s)
- Bibiana Fabri
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lucas Frédéric
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Christina Elsner
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| |
Collapse
|
9
|
May AM, Deegbey M, Edme K, Lee KJ, Perutz RN, Jakubikova E, Dempsey JL. Electronic Structure and Photophysics of Low Spin d 5 Metallocenes. Inorg Chem 2024; 63:1858-1866. [PMID: 38226604 DOI: 10.1021/acs.inorgchem.3c03451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The electronic structure and photophysics of two low spin metallocenes, decamethylmanganocene (MnCp*2) and decamethylrhenocene (ReCp*2), were investigated to probe their promise as photoredox reagents. Computational studies support the assignment of 2E2 ground state configurations and low energy ligand-to-metal charge transfer transitions for both complexes. Weak emission is observed at room temperature for ReCp*2 with τ = 1.8 ns in pentane, whereas MnCp*2 is not emissive. Calculation of the excited state reduction potentials for both metallocenes reveal their potential potency as excited state reductants (E°'([MnCp*2]+/0*) = -3.38 V and E°'([ReCp*2]+/0*) = -2.61 V vs Fc+/0). Comparatively, both complexes exhibit mild potentials for photo-oxidative processes (E°'([MnCp*2]0*/-) = -0.18 V and E°'([ReCp*2]0*/-) = -0.20 V vs Fc+/0). These results showcase the rich electronic structure of low spin d5 metallocenes and their promise as excited state reductants.
Collapse
Affiliation(s)
- Ann Marie May
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Mawuli Deegbey
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Kedy Edme
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Katherine J Lee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Robin N Perutz
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, United Kingdom
| | - Elena Jakubikova
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Jillian L Dempsey
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
10
|
Cerveri A, Scarica G, Sparascio S, Hoch M, Chiminelli M, Tegoni M, Protti S, Maestri G. Boosting Energy-Transfer Processes via Dispersion Interactions. Chemistry 2024:e202304010. [PMID: 38224554 DOI: 10.1002/chem.202304010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/17/2024]
Abstract
The generation of open-shell intermediates under mild conditions has opened broad synthetic opportunities during this century. However, these reactive species often require a case specific and tailored tuning of experimental parameters in order to efficiently convert substrates into products. We report a general approach that can overcome these ubiquitous limitations for several visible-light promoted energy-transfer processes. The use of either naphthalene (5-20 equiv.) or simple binaphthyl derivatives (10-30 mol %) greatly increases their efficiency, giving rise to a new strategy for catalysis. The trend is consistent among different media, photocatalysts, light sources and substrates, allowing one to improve existing methods, to more easily optimize conditions for new ones, and, moreover, to disclose otherwise inaccessible reaction pathways.
Collapse
Affiliation(s)
- Alessandro Cerveri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Gabriele Scarica
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Sara Sparascio
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Hoch
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Maurizio Chiminelli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Matteo Tegoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, Università di Pavia, Via Taramelli 10, 27100, Pavia, Italy
| | - Giovanni Maestri
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università di Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
11
|
Wen L, Ding J, Duan L, Wang S, An Q, Wang H, Zuo Z. Multiplicative enhancement of stereoenrichment by a single catalyst for deracemization of alcohols. Science 2023; 382:458-464. [PMID: 37883537 DOI: 10.1126/science.adj0040] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Stereochemical enrichment of a racemic mixture by deracemization must overcome unfavorable entropic effects as well as the principle of microscopic reversibility; recently, photochemical reaction pathways unveiled by the energetic input of light have led to innovations toward this end, most often by ablation of a stereogenic C(sp3)-H bond. We report a photochemically driven deracemization protocol in which a single chiral catalyst effects two mechanistically different steps, C-C bond cleavage and C-C bond formation, to achieve multiplicative enhancement of stereoinduction, which leads to high levels of stereoselectivity. Ligand-to-metal charge transfer excitation of a titanium catalyst coordinated by a chiral phosphoric acid or bisoxazoline efficiently enriches racemic alcohols that feature adjacent and fully substituted stereogenic centers to enantiomeric ratios up to 99:1. Mechanistic investigations support a pathway of sequential radical-mediated bond scission and bond formation through a common prochiral intermediate and reveal that, although the overall stereoenrichment is high, the selectivity in each individual step is moderate.
Collapse
Affiliation(s)
- Lu Wen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Lingfei Duan
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shun Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Hexiang Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhiwei Zuo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Rocker J, Dresel JA, Krieger LA, Eckhardt P, Ortuño AM, Kitzmann WR, Clever GH, Heinze K, Opatz T. Substitution Effects on the Photophysical and Photoredox Properties of Tetraaza[7]helicenes. Chemistry 2023; 29:e202301244. [PMID: 37222393 DOI: 10.1002/chem.202301244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 05/25/2023]
Abstract
A series of substituted derivatives of tetraaza[7]helicenes were synthesized and the influence of the substitution on their photophysical and photoredox-catalytic properties was studied. The combination of their high fluorescence quantum yields of up to 0.65 and their circularly polarized luminescence (CPL) activity results in CPL brightness values (BCPL ) that are among the highest recorded for [7]helicenes so far. A sulfonylation/hetarylation reaction using cyanopyridines as substrates for photoinduced electron transfer (PET) from the excited helicenes was conducted to test for viability in photoredox catalysis. DFT calculations predict the introduction of electron withdrawing substituents to yield more oxidizing catalysts.
Collapse
Affiliation(s)
- Johannes Rocker
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Johannes A Dresel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Leonie A Krieger
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Ana M Ortuño
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Guido H Clever
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Katja Heinze
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128, Mainz, Germany
| |
Collapse
|
13
|
Kundu S, Roy L, Maji MS. Development of Carbazole-Cored Organo-Photocatalyst for Visible Light-Driven Reductive Pinacol/Imino-Pinacol Coupling. Org Lett 2022; 24:9001-9006. [PMID: 36469513 DOI: 10.1021/acs.orglett.2c03600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Benzoperylenocarbazole (BPC), a unique carbazole-based organophotocatalyst, is reported herein as a potent organo-photoreductant. Lower excited state oxidation potential (-2.0 V vs SCE) and reasonable excited state lifetime (4.61 ns) render BPC an effective photosensitizer. Under irradiation of blue light employing low catalyst loading (0.5 mol %), a plethora of vicinal diols and diamines were synthesized in excellent yields through reductive coupling of carbonyls and imines, respectively. Insight about the electronic structure of BPC was obtained by DFT calculations.
Collapse
Affiliation(s)
- Samrat Kundu
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai, IOC Odisha Campus Bhubaneswar, Bhubaneswar 751013, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
14
|
Pinosa E, Bassan E, Cetin S, Villa M, Potenti S, Calogero F, Gualandi A, Fermi A, Ceroni P, Cozzi PG. Light-Induced Access to Carbazole-1,3-dicarbonitrile: A Thermally Activated Delayed Fluorescent (TADF) Photocatalyst for Cobalt-Mediated Allylations. J Org Chem 2022; 88:6390-6400. [DOI: 10.1021/acs.joc.2c01825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Emanuele Pinosa
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Elena Bassan
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Sultan Cetin
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
| | - Marco Villa
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simone Potenti
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy
| | - Francesco Calogero
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Gualandi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Andrea Fermi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Paola Ceroni
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Pier Giorgio Cozzi
- Alma Mater Studiorum - Università di Bologna, Dipartimento di Chimica “G. Ciamician”, Via Selmi 2, 40126 Bologna, Italy
- Center for Chemical Catalysis - C3, Alma Mater Studiorum - Università di Bologna, Via Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
15
|
Peng X, Hirao Y, Yabu S, Sato H, Higashi M, Akai T, Masaoka S, Mitsunuma H, Kanai M. A Catalytic Alkylation of Ketones via sp3 C-H Bond Activation. J Org Chem 2022; 88:6333-6346. [PMID: 35649206 DOI: 10.1021/acs.joc.2c00603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We identified a ternary hybrid catalyst system composed of an acridinium photoredox catalyst, a thiophosphoric imide (TPI) catalyst, and a titanium complex catalyst that promoted an intermolecular addition reaction of organic molecules with various ketones through sp3 C-H bond activation. The thiyl radical generated via single-electron oxidation of TPI by the excited photoredox catalyst abstracted a hydrogen atom from organic molecules such as toluene, benzyl alcohol, alkenes, aldehydes, and THF. The thus-generated carbon-centered radical species underwent addition to ketones and aldehydes. This intrinsically unfavorable step was promoted by single-electron reduction of the intermediate alkoxy radical by catalytically generated titanium(III) species. This reaction provided an efficient and straightforward route to a broad range of tertiary alcohols and was successfully applied to late-stage functionalization of drugs or their derivatives. The proposed mechanism was supported by both experimental and theoretical studies.
Collapse
Affiliation(s)
- Xue Peng
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuki Hirao
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Shunsuke Yabu
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Kyoto 615-8520, Japan
| | - Takuya Akai
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Shigeyuki Masaoka
- Graduate School of Engineering, Osaka University, Osaka 565-0871, Japan
| | - Harunobu Mitsunuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Motomu Kanai
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|