1
|
Blanco C, Ramos Castellanos R, Fogg DE. Anionic Olefin Metathesis Catalysts Enable Modification of Unprotected Biomolecules in Water. ACS Catal 2024; 14:11147-11152. [PMID: 39114091 PMCID: PMC11301623 DOI: 10.1021/acscatal.4c02811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Stability problems have limited the uptake of cationic olefin metathesis catalysts in chemical biology. Described herein are anionic catalysts that improve water-solubility, robustness, and compatibility with biomolecules such as DNA. A sulfonate tag is installed on the cyclic (alkyl)(amino) carbene (CAAC) ligand platform, chosen for resistance to degradation by nucleophiles, base, water, and β-elimination. Hoveyda-Grubbs catalysts bearing the sulfonated CAAC ligands deliver record productivity in metathesis of unprotected carbohydrates and nucleosides at neutral pH. Decomposed catalyst has negligible impact on metathesis selectivity, whereas N-heterocyclic carbene (NHC) catalysts degrade rapidly in water and cause extensive C=C migration.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Richard Ramos Castellanos
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
2
|
Talcik J, Serrato MR, Del Vecchio A, Colombel-Rouen S, Morvan J, Roisnel T, Jazzar R, Melaimi M, Bertrand G, Mauduit M. Cyclic (amino)(barrelene)carbene Ru-complexes: synthesis and reactivity in olefin metathesis. Dalton Trans 2024; 53:5346-5350. [PMID: 38450432 DOI: 10.1039/d4dt00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
The synthesis of ruthenium-complexes with cyclic (amino)(barrelene)carbenes (namely CABCs) as ligands is reported. Isolated in moderate to good yields, these new complexes showed impressive thermal stability at 110 °C over several days. Good catalytic performances were demonstrated in various ring-closing metathesis (RCM), macrocyclic-RCM, ring-closing enyne metathesis (RCEYM), cross-metathesis (CM), and ring-opening cross metathesis (ROCM) reactions.
Collapse
Affiliation(s)
- Jakub Talcik
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Melinda R Serrato
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Antonio Del Vecchio
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Sophie Colombel-Rouen
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Jennifer Morvan
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Thierry Roisnel
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| | - Rodolphe Jazzar
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Mohand Melaimi
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Guy Bertrand
- UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA.
| | - Marc Mauduit
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
3
|
Foscato M, Occhipinti G, Hopen Eliasson SH, Jensen VR. Automated de Novo Design of Olefin Metathesis Catalysts: Computational and Experimental Analysis of a Simple Thermodynamic Design Criterion. J Chem Inf Model 2024; 64:412-424. [PMID: 38247361 PMCID: PMC10806812 DOI: 10.1021/acs.jcim.3c01649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/23/2024]
Abstract
Methods for computational de novo design of inorganic molecules have paved the way for automated design of homogeneous catalysts. Such studies have so far relied on correlation-based prediction models as fitness functions (figures of merit), but the soundness of these approaches has yet to be tested by experimental verification of de novo-designed catalysts. Here, a previously developed criterion for the optimization of dative ligands L in ruthenium-based olefin metathesis catalysts RuCl2(L)(L')(═CHAr), where Ar is an aryl group and L' is a phosphine ligand dissociating to activate the catalyst, was used in de novo design experiments. These experiments predicted catalysts bearing an N-heterocyclic carbene (L = 9) substituted by two N-bound mesityls and two tert-butyl groups at the imidazolidin-2-ylidene backbone to be promising. Whereas the phosphine-stabilized precursor assumed by the prediction model could not be made, a pyridine-stabilized ruthenium alkylidene complex (17) bearing carbene 9 was less active than a known leading pyridine-stabilized Grubbs-type catalyst (18, L = H2IMes). A density functional theory-based analysis showed that the unsubstituted metallacyclobutane (MCB) intermediate generated in the presence of ethylene is the likely resting state of both 17 and 18. Whereas the design criterion via its correlation between the stability of the MCB and the rate-determining barrier indeed seeks to stabilize the MCB, it relies on RuCl2(L)(L')(═CH2) adducts as resting states. The change in resting state explains the discrepancy between the prediction and the actual performance of catalyst 17. To avoid such discrepancies and better address the multifaceted challenges of predicting catalytic performance, future de novo catalyst design studies should explore and test design criteria incorporating information from more than a single relative energy or intermediate.
Collapse
Affiliation(s)
- Marco Foscato
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Giovanni Occhipinti
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | | | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
4
|
Gawin R, Tracz A, Krajczy P, Kozakiewicz-Piekarz A, Martínez JP, Trzaskowski B. Inhibition of the Decomposition Pathways of Ruthenium Olefin Metathesis Catalysts: Development of Highly Efficient Catalysts for Ethenolysis. J Am Chem Soc 2023. [PMID: 37916946 DOI: 10.1021/jacs.3c10635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Ruthenium-based Hoveyda-type olefin metathesis catalysts bearing novel rigid spirocyclic alkyl amino carbenes (CAACs) have been developed. They are characterized by exceptional stability toward decomposition through β-elimination and bimolecular pathways, thus enabling unprecedented efficiency in the cross-metathesis of seed oil-derived fatty acid esters with ethylene (ethenolysis). Catalyst loading as low as 100 ppb was applied to the ethenolysis of the model substrate methyl oleate, leading to a remarkable turnover number (TON) of 2.6 million, significantly higher than previously reported (TON 340 000 at 1 ppm and 744 000 at 0.5 ppm catalyst loading). Ethenolysis of methyl esters derived from high oleic sunflower oil and rapeseed oil, readily available on an industrial scale, inexpensive, and renewable feedstocks, was for the first time effectively carried out with 0.5 ppm catalyst loading with TON as high as 964 000.
Collapse
Affiliation(s)
- Rafał Gawin
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | - Andrzej Tracz
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | | | | | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| | - Bartosz Trzaskowski
- Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097 Warszawa, Poland
| |
Collapse
|
5
|
Ou X, Occhipinti G, Boisvert EJY, Jensen VR, Fogg DE. Mesomeric Acceleration Counters Slow Initiation of Ruthenium-CAAC Catalysts for Olefin Metathesis (CAAC = Cyclic (Alkyl)(Amino) Carbene). ACS Catal 2023; 13:5315-5325. [PMID: 37123599 PMCID: PMC10127214 DOI: 10.1021/acscatal.2c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 03/20/2023] [Indexed: 04/08/2023]
Abstract
Ruthenium catalysts bearing cyclic (alkyl)(amino)carbene (CAAC) ligands can attain very high productivities in olefin metathesis, owing to their resistance to unimolecular decomposition. Because the propagating methylidene species RuCl2(CAAC)(=CH2) is extremely susceptible to bimolecular decomposition, however, turnover numbers in the metathesis of terminal olefins are highly sensitive to catalyst concentration, and hence loadings. Understanding how, why, and how rapidly the CAAC complexes partition between the precatalyst and the active species is thus critical. Examined in a dual experimental-computational study are the rates and basis of initiation for phosphine-free catalysts containing the leading CAAC ligand C1 Ph , in which a CMePh group α to the carbene carbon helps retard degradation. The Hoveyda-class complex HC1 Ph (RuCl2(L)(=CHAr), where L = C1 Ph , Ar = C6H3-2-O i Pr-5-R; R = H) is compared with its nitro-Grela analogue (nG-C1 Ph ; R = NO2) and the classic Hoveyda catalyst HII (L = H2IMes; R = H). t-Butyl vinyl ether (tBuVE) was employed as substrate, to probe the reactivity of these catalysts toward olefins of realistic bulk. Initiation is ca. 100× slower for HC1 Ph than HII in C6D6, or 44× slower in CDCl3. The rate-limiting step for the CAAC catalyst is cycloaddition; for HII, it is tBuVE binding. Initiation is 10-13× faster for nG-C1 Ph than HC1 Ph in either solvent. DFT analysis reveals that this rate acceleration originates in an overlooked role of the nitro group. Rather than weakening the Ru-ether bond, as widely presumed, the NO2 group accelerates the ensuing, rate-limiting cycloaddition step. Faster reaction is caused by long-range mesomeric effects that modulate key bond orders and Ru-ligand distances, and thereby reduce the trans effect between the carbene and the trans-bound alkene in the transition state for cycloaddition. Mesomeric acceleration may plausibly be introduced via any of the ligands present, and hence offers a powerful, tunable control element for catalyst design.
Collapse
Affiliation(s)
- Xinrui Ou
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Giovanni Occhipinti
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Eliza-Jayne Y. Boisvert
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vidar R. Jensen
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation, and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway
| |
Collapse
|
6
|
Blanco C, Fogg DE. Water-Accelerated Decomposition of Olefin Metathesis Catalysts. ACS Catal 2023; 13:1097-1102. [PMID: 36714054 PMCID: PMC9872090 DOI: 10.1021/acscatal.2c05573] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Water is ubiquitous in olefin metathesis, at levels ranging from contaminant to cosolvent. It is also non-benign. Water-promoted catalyst decomposition competes with metathesis, even for "robust" ruthenium catalysts. Metathesis is hence typically noncatalytic for demanding reactions in water-rich environments (e.g., chemical biology), a challenge as the Ru decomposition products promote unwanted reactions such as DNA degradation. To date, only the first step of the decomposition cascade is understood: catalyst aquation. Here we demonstrate that the aqua species dramatically accelerate both β-elimination of the metallacyclobutane intermediate and bimolecular decomposition of four-coordinate [RuCl(H2O)n(L)(=CHR)]Cl. Decomposition can be inhibited by blocking aquation and β-elimination.
Collapse
Affiliation(s)
- Christian
O. Blanco
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5
| | - Deryn E. Fogg
- Center
for Catalysis Research & Innovation and Department of Chemistry
and Biomolecular Sciences, University of
Ottawa, Ottawa, Ontario, Canada K1N 6N5,Department
of Chemistry, University of Bergen, Allégaten 41, N-5007 Bergen, Norway,,
| |
Collapse
|