1
|
Rodríguez M, Molina F, Díaz-Requejo MM, Pérez PJ. Copper and Silver Trispyrazolylborate-Phosphinoazide Complexes: Synthesis, Characterization, and Nitrene Generation. Inorg Chem 2025; 64:151-157. [PMID: 39745493 PMCID: PMC11734125 DOI: 10.1021/acs.inorgchem.4c04397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/14/2025]
Abstract
Phosphinoazide complexes of the composition TpBr3M-L (M = Cu, Ag, and L = 2-azido-1,3-bis(2,6-diisopropylphenyl)-2,3-dihydro-1H-1,3,2-diazaphosphole) have been synthesized and structurally characterized. Their thermal decomposition led to cyclodiphosphazenes as a result of the metal-mediated coupling of two nitrene units in a process that takes place in both a stoichiometric and catalytic manner. Experimental data have allowed proposing a mechanistic pathway for this new transformation.
Collapse
Affiliation(s)
- Manuel
R. Rodríguez
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Francisco Molina
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - M. Mar Díaz-Requejo
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| | - Pedro J. Pérez
- Laboratorio de Catálisis
Homogénea, Unidad Asociada al CSIC, CIQSO-Centro de Investigación
en Química Sostenible and Departamento de Química, Universidad de Huelva, 21007 Huelva, Spain
| |
Collapse
|
2
|
Kaur U, Gayen S, Sharma H, Vanka K, Ghosh S. A Pair of Dinuclear Fe(II) Enantiomers: Syntheses and Structures of ΛΔ/ΔΛ-Bis(Dihydridoborate) Complexes. Chemistry 2024:e202404469. [PMID: 39661049 DOI: 10.1002/chem.202404469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
In our effort to establish a direct synthetic approach for bis(dihydridoborate) complexes of first-row transition metals, we have investigated the reactivity of [Cp*Fe(dppe)Cl] (dppe =1,2-bis(diphenylphosphino)ethane) with Na[BH3L] (L =2-mercaptopyridine (mp) and 2-mercaptobenzothiazole (mbz)) that led to the formation of iron(II) dihydridoborate complexes, [Cp*Fe{κ3-S,H,H-(H2BH(L))}] 1 a-b (L=mp (1 a) and L=mbz (1 b)). Further, in an attempt to isolate the bis(dihydridoborate) complex of iron by the insertion of borane into the κ2-N,S-chelated iron complex, [(dppe)Fe{κ2-N,S-(mp)}2] (2), we have isolated and structurally characterized a rare example of dimeric iron bis(dihydridoborate) complex, [Fe{κ3-S,H,H-(H2BH(mp))}2]2, ΛΔ/ΔΛ-3 as pair of enantiomers. Interestingly, these enantiomers ΛΔ/ΔΛ-3 have two trans-[Fe{κ3-S,H,H-(H2BH(mp))}2] moieties bridged through sulfur atoms of 2-mercaptopyridinyl ligands, where the iron centres are hepta-coordinated. The natural bond-orbital (NBO) analyses of ΛΔ-3 and ΔΛ-3 show considerable electron donation from the filled σB-H bonding orbital to vacantd z 2 ${{d}_{{z}^{2}}}$ orbital of iron with a substantial contribution from the hydrogen atoms. The localized orbital bonding analysis (LOBA) method suggests that all the iron centres are in +2 oxidation state.
Collapse
Affiliation(s)
- Urminder Kaur
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sourav Gayen
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Himanshu Sharma
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kumar Vanka
- Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan Pune, 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sundargopal Ghosh
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
3
|
Werncke CG, Müller I, Weißer K, Limberg C. Divergent Interaction of (Iso)nitriles with a Linear Iron(I) Silylamide─A Combined Structural, Spectroscopic, and Computational Study. Inorg Chem 2024; 63:15236-15246. [PMID: 39066707 DOI: 10.1021/acs.inorgchem.4c02882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Nitriles and isonitriles are important σ-donor ligands in coordination chemistry. Isonitriles also function in low-valent complexes as π-acceptor ligands similar to CO. Herein we present the unusual behavior of the highly reducing, high-spin iron(I) complex [Fe(hmds)2]- toward these compound classes. Rare examples of side-on coordination of nitriles to the metal center are observed. Insights gained by 57Fe Mössbauer spectroscopy as well as DFT and CASSCF calculations give an interplay between the resonance structures of not only an iron(I) π-complex and an iron(III) metallacycle but also point to the importance of an iron(II) nitrile radical anion. For an aromatic isonitrile end-on coordination is observed, which is best described as an iron(I) complex with only minor unpaired spin transfer onto the isonitrile. For aliphatic isonitriles, the selective R-CN bond cleavage occurs and yields stoichiometric mixtures of alkyl iron(II) and cyanido iron(II) complexes. Attempts to isolate presumed (iso)nitrile radical anions void of 3d-metal coordination give for the reaction of an aromatic isonitrile with KC8 facile reductive coupling to the corresponding diamido acetylene.
Collapse
Affiliation(s)
- C Gunnar Werncke
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Igor Müller
- Chemistry Department, Philipps-University Marburg, Hans-Meerwein-Straße 4, D-35043 Marburg, Germany
| | - Kilian Weißer
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| | - Christian Limberg
- Institute of Chemistry, Humboldt-University Berlin, Brook-Taylor-Str. 2, D-13089 Berlin, Germany
| |
Collapse
|
4
|
Janssen M, Frederichs T, Olaru M, Lork E, Hupf E, Beckmann J. Synthesis of a stable crystalline nitrene. Science 2024; 385:318-321. [PMID: 38870274 DOI: 10.1126/science.adp4963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Nitrenes are a highly reactive, yet fundamental, compound class. They possess a monovalent nitrogen atom and usually a short life span, typically in the nanosecond range. Here, we report on the synthesis of a stable nitrene by photolysis of the arylazide MSFluindN3 (1), which gave rise to the quantitative formation of the arylnitrene MSFluindN (2) (MSFluind is dispiro[fluorene-9,3'-(1',1',7',7'-tetramethyl-s-hydrindacen-4'-yl)-5',9''-fluorene]) that remains unchanged for at least 3 days when stored under argon atmosphere at room temperature. The extraordinary life span permitted the full characterization of 2 by single-crystal x-ray crystallography, electron paramagnetic resonance spectroscopy, and superconducting quantum interference device magnetometry, which supported a triplet ground state. Theoretical simulations suggest that in addition to the kinetic stabilization conferred by the bulky MSFluind aryl substituent, electron delocalization across the central aromatic ring contributes to the electron stabilization of 2.
Collapse
Affiliation(s)
- Marvin Janssen
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Thomas Frederichs
- Faculty of Geosciences, University of Bremen, Klagenfurther Str. 2-4, D-28359 Bremen, Germany
| | - Marian Olaru
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Enno Lork
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Emanuel Hupf
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, Faculty of Biology and Chemistry, University of Bremen, Leobener Str. 7, D-28359 Bremen, Germany
| |
Collapse
|
5
|
Russell JJ, DeJesus JF, Smith BA, Nalaoh P, Vogiatzis KD, Jenkins DM. Disparate reactivity of a chiral iron(II) tetracarbene complex with organic azides. Dalton Trans 2024; 53:10819-10823. [PMID: 38864554 DOI: 10.1039/d4dt01422g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
A chiral tetra-NHC iron(II) complex and its disparate reactivity with multiple organic azides is reported. Both aryl and alkyl azides react with the iron(II) complex yielding three distinct products: an iron(IV) imide, an iron(IV) tetrazene, and a surprising and unprecedented double imide insertion complex.
Collapse
Affiliation(s)
- Jerred J Russell
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Joseph F DeJesus
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Brett A Smith
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | - Phattananawee Nalaoh
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| | | | - David M Jenkins
- Department of Chemistry, The University of Tennessee, Knoxville, Tennessee 37996, USA.
| |
Collapse
|
6
|
Stroek W, Keilwerth M, Malaspina LA, Grabowsky S, Meyer K, Albrecht M. Deciphering Iron-Catalyzed C-H Amination with Organic Azides: N 2 Cleavage from a Stable Organoazide Complex. Chemistry 2024; 30:e202303410. [PMID: 37916523 DOI: 10.1002/chem.202303410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/03/2023]
Abstract
Catalytic C-N bond formation by direct activation of C-H bonds offers wide synthetic potential. En route to C-H amination, complexes with organic azides are critical precursors towards the reactive nitrene intermediate. Despite their relevance, α-N coordinated organoazide complexes are scarce in general, and elusive with iron, although iron complexes are by far the most active catalysts for C-H amination with organoazides. Herein, we report the synthesis of a stable iron α-N coordinated organoazide complex from [Fe(N(SiMe3 )2 )2 ] and AdN3 (Ad=1-adamantyl) and its crystallographic, IR, NMR and zero-field 57 Fe Mössbauer spectroscopic characterization. These analyses revealed that the organoazide is in fast equilibrium between the free and coordinated state (Keq =62). Photo-crystallography experiments showed gradual dissociation of N2 , which imparted an Fe-N bond shortening and correspond to structural snapshots of the formation of an iron imido/nitrene complex. Reactivity of the organoazide complex in solution showed complete loss of N2 , and subsequent formation of a C-H aminated product via nitrene insertion into a C-H bond of the N(SiMe3 )2 ligand. Monitoring this reaction by 1 H NMR spectroscopy indicates the transient formation of the imido/nitrene intermediate, which was supported by Mössbauer spectroscopy in frozen solution.
Collapse
Affiliation(s)
- Wowa Stroek
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058, Erlangen, Germany
| | - Martin Albrecht
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Juda CE, Casaday CE, Clarke RM, Litak NP, Campbell BM, Chang T, Zheng SL, Chen YS, Betley TA. Lewis Acid Supported Nickel Nitrenoids. Angew Chem Int Ed Engl 2023; 62:e202313156. [PMID: 37830508 DOI: 10.1002/anie.202313156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
Metalation of the polynucleating ligand F,tbs LH6 (1,3,5-C6 H9 (NC6 H3 -4-F-2-NSiMe2 t Bu)3 ) with two equivalents of Zn(N(SiMe3 )2 )2 affords the dinuclear product (F,tbs LH2 )Zn2 (1), which can be further deprotonated to yield (F,tbs L)Zn2 Li2 (OEt2 )4 (2). Transmetalation of 2 with NiCl2 (py)2 yields the heterometallic, trinuclear cluster (F,tbs L)Zn2 Ni(py) (3). Reduction of 3 with KC8 affords [KC222 ][(F,tbs L)Zn2 Ni] (4) which features a monovalent Ni centre. Addition of 1-adamantyl azide to 4 generates the bridging μ3 -nitrenoid adduct [K(THF)3 ][(F,tbs L)Zn2 Ni(μ3 -NAd)] (5). EPR spectroscopy reveals that the anionic cluster possesses a doublet ground state (S =1 / 2 ${{ 1/2 }}$ ). Cyclic voltammetry of 5 reveals two fully reversible redox events. The dianionic nitrenoid [K2 (THF)9 ][(F,tbs L)Zn2 Ni(μ3 -NAd)] (6) was isolated and characterized while the neutral redox isomer was observed to undergo both intra- and intermolecular H-atom abstraction processes. Ni K-edge XAS studies suggest a divalent oxidation state for the Ni centres in both the monoanionic and dianionic [Zn2 Ni] nitrenoid complexes. However, DFT analysis suggests Ni-borne oxidation for 5.
Collapse
Affiliation(s)
- Cristin E Juda
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Claire E Casaday
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Ryan M Clarke
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Nicholas P Litak
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Brandon M Campbell
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Tieyan Chang
- ChemMatCARS Beamline, The University of Chicago, Advanced Photon Source, Argonne, IL 60429, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| | - Yu-Sheng Chen
- ChemMatCARS Beamline, The University of Chicago, Advanced Photon Source, Argonne, IL 60429, USA
| | - Theodore A Betley
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, MA 02138, USA
| |
Collapse
|
8
|
Zars E, Pick L, Swain A, Bhunia M, Carroll PJ, Munz D, Meyer K, Mindiola DJ. Iron-Catalyzed Intermolecular C-H Amination Assisted by an Isolated Iron-Imido Radical Intermediate. Angew Chem Int Ed Engl 2023:e202311749. [PMID: 37815099 DOI: 10.1002/anie.202311749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Lisa Pick
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Abinash Swain
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| |
Collapse
|
9
|
Gonzalez A, Demeshko S, Meyer F, Werncke CG. A low-coordinate iron organoazide complex. Chem Commun (Camb) 2023; 59:11532-11535. [PMID: 37672291 DOI: 10.1039/d3cc03765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
A labile organoazide iron complex is reported. Under ambient conditions, the azide adduct is subject to a dissociation equilibrium in solution, yet also undergoes intramolecular C-H bond amination. Single-crystal irradiation of the azide at 80 K leads to partial N2-extrusion and formation of a putative imido iron intermediate, which was computationally identified as a highly covalent {FeNR}8 species.
Collapse
Affiliation(s)
- Andres Gonzalez
- Philipps-University Marburg, Hans-Meerwein-Straße 4, Marburg D-35032, Germany.
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, Göttingen D-37077, Germany
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, Göttingen D-37077, Germany
| | - C Gunnar Werncke
- Philipps-University Marburg, Hans-Meerwein-Straße 4, Marburg D-35032, Germany.
| |
Collapse
|
10
|
Gonzalez A, Chen TY, Demeshko S, Meyer F, Werncke CG. Synthesis, Properties, and Reactivity of a Linear NHC-Based Chromium(I) Silylamide. Organometallics 2023. [DOI: 10.1021/acs.organomet.3c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
11
|
Bhutto SM, Hooper RX, Mercado BQ, Holland PL. Mechanism of Nitrogen-Carbon Bond Formation from Iron(IV) Disilylhydrazido Intermediates during N 2 Reduction. J Am Chem Soc 2023; 145:4626-4637. [PMID: 36794981 DOI: 10.1021/jacs.2c12382] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
We recently reported a reaction sequence that activates C-H bonds in simple arenes as well as the N-N triple bond in N2, delivering the aryl group to N2 to form a new N-C bond (Nature 2020, 584, 221). This enables the transformation of abundant feedstocks (arenes and N2) into N-containing organic compounds. The key N-C bond forming step occurs upon partial silylation of N2. However, the pathway through which reduction, silylation, and migration occurred was unknown. Here, we describe synthetic, structural, magnetic, spectroscopic, kinetic, and computational studies that elucidate the steps of this transformation. N2 must be silylated twice at the distal N atom before aryl migration can occur, and sequential silyl radical and silyl cation addition is a kinetically competent pathway to a formally iron(IV)-NN(SiMe3)2 intermediate that can be isolated at low temperature. Kinetic studies show its first-order conversion to the migrated product, and DFT calculations indicate a concerted transition state for migration. The electronic structure of the formally iron(IV) intermediate is examined using DFT and CASSCF calculations, which reveal contributions from iron(II) and iron(III) resonance forms with oxidized NNSi2 ligands. The depletion of electron density from the Fe-coordinated N atom makes it electrophilic enough to accept the incoming aryl group. This new pathway for the N-C bond formation offers a method for functionalizing N2 using organometallic chemistry.
Collapse
Affiliation(s)
- Samuel M Bhutto
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Reagan X Hooper
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| | - Patrick L Holland
- Department of Chemistry, Yale University, 225 Prospect St., New Haven, Connecticut 06520, United States
| |
Collapse
|
12
|
Weller R, Atanasov M, Demeshko S, Chen TY, Mohelsky I, Bill E, Orlita M, Meyer F, Neese F, Werncke CG. On the Single-Molecule Magnetic Behavior of Linear Iron(I) Arylsilylamides. Inorg Chem 2023; 62:3153-3161. [PMID: 36744742 DOI: 10.1021/acs.inorgchem.2c04050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The rational design of 3d-metal-based single-molecule magnets (SMM) requires a fundamental understanding of their intrinsic electronic and structural properties and how they translate into experimentally observable features. Here, we determined the magnetic properties of the linear iron(I) silylamides K{crypt}[FeL2] and [KFeL2] (L = -N(Dipp)SiMe3; crypt = 4,7,13,16,21,24-Hexaoxa-1,10-diazabicyclo[8.8.8]hexacosan). For the former, slow-relaxation of the magnetization with a spin reversal barrier of Ueff = 152 cm-1 as well as a closed-waist magnetic hysteresis and magnetic blocking below 2.5 K are observed. For the more linear [KFeL2], in which the potassium cation is encapsulated by the aryl substituents of the amide ligands, the relaxation barrier and the blocking temperature increase to Ueff = 184 cm-1 and TB = 4.5 K, respectively. The increase is rationalized by a more pronounced axial anisotropy in [KFeL2] determined by dc-SQUID magnetometry. The effective relaxation barrier of [KFeL2] is in agreement with the energy spacing between the ground and first-excited magnetic states, as obtained by field-dependent IR-spectroscopy (178 cm-1), magnetic measurements (208 cm-1), as well as theoretical analysis (212 cm-1). In comparison with the literature, the results show that magnetic coercivity in linear iron(I) silylamides is driven by the degree of linearity in conjunction with steric encumbrance, whereas the ligand symmetry is a marginal factor.
Collapse
Affiliation(s)
- Ruth Weller
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35043Marburg, Germany
| | - Mihail Atanasov
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany.,Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Akad.Georgi Bontchev Street, Bl.11, 1113Sofia, Bulgaria
| | - Serhiy Demeshko
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Ting-Yi Chen
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Ivan Mohelsky
- LAB National des Champs Magnétiques Intenses, LNCMI─CNRS, 25 Martyrs Avenue, BP 166, 38042Grenoble Cedex 9, France
| | - Eckhard Bill
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany
| | - Milan Orlita
- LAB National des Champs Magnétiques Intenses, LNCMI─CNRS, 25 Martyrs Avenue, BP 166, 38042Grenoble Cedex 9, France.,Institute of Physics, Charles University in Prague, Ke Karlovu 5, CZ-12116Prague, Czech Republic
| | - Franc Meyer
- Institute of Inorganic Chemistry, University of Göttingen, Tammannstr. 4, D-37077Göttingen, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470Mülheim an der Ruhr, Germany
| | - C Gunnar Werncke
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Straße 4, 35043Marburg, Germany
| |
Collapse
|
13
|
Keilwerth M, Mao W, Jannuzzi SAV, Grunwald L, Heinemann FW, Scheurer A, Sutter J, DeBeer S, Munz D, Meyer K. From Divalent to Pentavalent Iron Imido Complexes and an Fe(V) Nitride via N-C Bond Cleavage. J Am Chem Soc 2023; 145:873-887. [PMID: 36583993 DOI: 10.1021/jacs.2c09072] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key intermediates in metal-catalyzed nitrogen-transfer chemistry, terminal imido complexes of iron have attracted significant attention for a long time. In search of versatile model compounds, the recently developed second-generation N-anchored tris-NHC chelating ligand tris-[2-(3-mesityl-imidazole-2-ylidene)-methyl]amine (TIMMNMes) was utilized to synthesize and compare two series of mid- to high-valent iron alkyl imido complexes, including a reactive Fe(V) adamantyl imido intermediate en route to an isolable Fe(V) nitrido complex. The chemistry toward the iron adamantyl imides was achieved by reacting the Fe(I) precursor [(TIMMNMes)FeI(N2)]+ (1) with 1-adamantyl azide to yield the corresponding trivalent iron imide. Stepwise chemical reduction and oxidation lead to the isostructural series of low-spin [(TIMMNMes)Fe(NAd)]0,1+,2+,3+ (2Ad-5Ad) in oxidation states II to V. The Fe(V) imide [(TIMMNMes)Fe(NAd)]3+ (5Ad) is unstable under ambient conditions and converts to the air-stable nitride [(TIMMNMes)FeV(N)]2+ (6) via N-C bond cleavage. The stability of the pentavalent imide can be increased by derivatizing the nitride [(TIMMNMes)FeIV(N)]+ (7) with an ethyl group using the triethyloxonium salt Et3OPF6. This gives access to the analogous series of ethyl imides [(TIMMNMes)Fe(NEt)]0,1+,2+,3+ (2Et-5Et), including the stable Fe(V) ethyl imide. Iron imido complexes exist in a manifold of different electronic structures, ultimately controlling their diverse reactivities. Accordingly, these complexes were characterized by single-crystal X-ray diffraction analyses, SQUID magnetization, and electrochemical methods, as well as 57Fe Mössbauer, IR vibrational, UV/vis electronic absorption, multinuclear NMR, X-band EPR, and X-ray absorption spectroscopy. Our studies are complemented with quantum chemical calculations, thus providing further insight into the electronic structures of all complexes.
Collapse
Affiliation(s)
- Martin Keilwerth
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Weiqing Mao
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Sergio A V Jannuzzi
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Liam Grunwald
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany.,Department of Chemistry and Applied Biosciences (D-CHAB), ETH Zürich, 8093 Zürich, Switzerland
| | - Frank W Heinemann
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Andreas Scheurer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Jörg Sutter
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| | - Serena DeBeer
- Max-Planck-Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstraße 1, 91058 Erlangen, Germany
| |
Collapse
|
14
|
Yang PC, Yu KP, Hsieh CT, Zou J, Fang CT, Liu HK, Pao CW, Deng L, Cheng MJ, Lin CY. Stabilization of a high-spin three-coordinate Fe(III) imidyl complex by radical delocalization. Chem Sci 2022; 13:9637-9643. [PMID: 36091897 PMCID: PMC9400638 DOI: 10.1039/d2sc02699f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/04/2022] [Indexed: 11/21/2022] Open
Abstract
High-spin, late transition metal imido complexes have attracted significant interest due to their group transfer reactivity and catalytic C−H activation of organic substrates. Reaction of a new two-coordinate iron complex,...
Collapse
Affiliation(s)
- Po-Chun Yang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Kuan-Po Yu
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chi-Tien Hsieh
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Junjie Zou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Chia-Te Fang
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Hsin-Kuan Liu
- Core Facility Center, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 300092 Taiwan
| | - Liang Deng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mu-Jeng Cheng
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| | - Chun-Yi Lin
- Department of Chemistry, National Cheng Kung University No. 1 University Road Tainan 701014 Taiwan
| |
Collapse
|