1
|
Bian X, Zhou L, Luo Z, Liu G, Hang Z, Li H, Li F, Wen Y. Emerging Delivery Systems for Enabling Precision Nucleic Acid Therapeutics. ACS NANO 2025; 19:4039-4083. [PMID: 39834294 DOI: 10.1021/acsnano.4c11858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nucleic acid therapeutics represent a highly promising treatment approach in modern medicine, treating diseases at the genetic level. However, these therapeutics face numerous challenges in practical applications, particularly regarding their stability, effectiveness, cellular uptake efficiency, and limitations in delivering them specifically to target tissues. To overcome these obstacles, researchers have developed various innovative delivery systems, including viral vectors, lipid nanoparticles, polymer nanoparticles, inorganic nanoparticles, protein carriers, exosomes, antibody oligonucleotide conjugates, and DNA nanostructure-based delivery systems. These systems enhance the therapeutic efficacy of nucleic acid drugs by improving their stability, targeting specificity, and half-life in vivo. In this review, we systematically discuss different types of nucleic acid drugs, analyze the major barriers encountered in their delivery, and summarize the current research progress in emerging delivery systems. We also highlight the latest advancements in the application of these systems for treating genetic diseases, infectious diseases, cancer, brain diseases, and wound healing. This review aims to provide a comprehensive overview of nucleic acid drug delivery systems' current status and future directions by integrating the latest advancements in nanotechnology, biomaterials science, and gene editing technologies, emphasizing their transformative potential in precision medicine.
Collapse
Affiliation(s)
- Xiaochun Bian
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhiwei Luo
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Guotao Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhongci Hang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haohao Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Fengyong Li
- Plastic Surgery Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
2
|
Li C, Sun S, Kong H, Xie X, Liang G, Zhang Y, Wang H, Li J. A dual-locked cyclopeptide-siRNA conjugate for tumor-specific gene silencing. RSC Chem Biol 2025; 6:73-80. [PMID: 39634054 PMCID: PMC11612639 DOI: 10.1039/d4cb00247d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/23/2024] [Indexed: 12/07/2024] Open
Abstract
Strategies allowing tumor-selective siRNA delivery while minimizing off-tumor gene silencing effects are highly demanded to advance cancer gene therapy, which however still remain challenging. We herein report a dual-locking bioconjugation approach to address this challenge. A dual-locked cyclopeptide-siRNA conjugate (DPRC) was designed to simultaneously endow siRNA with tumor-targeting properties and tumor-biomarker/visible-light dually controllable action. The DPRC consisted of a programmed death-ligand 1 (PD-L1)-targeting cyclopeptide as a tumor-homing ligand and B-cell lymphoma-2 (Bcl-2)-targeting siRNA as a payload. They were conjugated via a tandem-responsive cleavable linker containing a photocleavable coumarin moiety quenched by naphthylamide through a disulfide linkage. Owing to the interaction between cell-membrane PD-L1 and the cyclopeptide, the DPRC was efficiently taken up by PD-L1-positive cancer cells. Notably, the internalized DPRC could only release and restore the gene silencing activity of siBcl-2 upon GSH-mediated disulfide bond breakage followed by visible light irradiation on the coumarin moiety to induce photo-cleavage. The released siBcl-2 further silenced the expression of anti-apoptotic Bcl-2 to suppress cancer cell growth. We demonstrated the tumor-targeting and dual-locked action of siRNA by the DPRC in both two-dimensional and three-dimensional cancer cell cultures. This study thus presents a novel strategy for precise tumor-specific gene silencing by siRNA.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Shuaishuai Sun
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Hao Kong
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University Nanjing 211189 China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Jiao J, Qian Y, Lv Y, Wei W, Long Y, Guo X, Buerliesi A, Ye J, Han H, Li J, Zhu Y, Zhang W. Overcoming limitations and advancing the therapeutic potential of antibody-oligonucleotide conjugates (AOCs): Current status and future perspectives. Pharmacol Res 2024; 209:107469. [PMID: 39433169 DOI: 10.1016/j.phrs.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024]
Abstract
As cancer incidence rises due to an aging population, the importance of precision medicine continues to grow. Antibody-drug conjugates (ADCs) exemplify targeted therapies by delivering cytotoxic agents to specific antigens. Building on this concept, researchers have developed antibody-oligonucleotide conjugates (AOCs), which combine antibodies with oligonucleotides to regulate gene expression. This review highlights the mechanism of AOCs, emphasizing their unique ability to selectively target and modulate disease-causing proteins. It also explores the components of AOCs and their application in tumor therapy while addressing key challenges such as manufacturing complexities, endosomal escape, and immune response. The article underscores the significance of AOCs in precision oncology and discusses future directions, highlighting their potential in treating cancers driven by genetic mutations and abnormal protein expression.
Collapse
Affiliation(s)
- Jinlan Jiao
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Yun Qian
- Dermatologic Surgery Department, Institute of Dermatology, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing 210042, China
| | - Yinhua Lv
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Wenqian Wei
- Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yongxuan Long
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Xiaoling Guo
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Anya Buerliesi
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Jiahui Ye
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China
| | - Hao Han
- Department of Ultrasound, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, China.
| | - Weijie Zhang
- Division of Breast Surgery, Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
4
|
Dastgerdi NK, Dastgerdi NK, Bayraktutan H, Costabile G, Atyabi F, Dinarvand R, Longobardi G, Alexander C, Conte C. Enhancing siRNA cancer therapy: Multifaceted strategies with lipid and polymer-based carrier systems. Int J Pharm 2024; 663:124545. [PMID: 39098747 DOI: 10.1016/j.ijpharm.2024.124545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Cancers are increasing in prevalence and many challenges remain for their treatment, such as chemoresistance and toxicity. In this context, siRNA-based therapeutics have many potential advantages for cancer therapies as a result of their ability to reduce or prevent expression of specific cancer-related genes. However, the direct delivery of naked siRNA is hindered by issues like enzymatic degradation, insufficient cellular uptake, and poor pharmacokinetics. Hence, the discovery of a safe and efficient delivery vehicle is essential. This review explores various lipid and polymer-based delivery systems for siRNA in cancer treatment. Both polymers and lipids have garnered considerable attention as carriers for siRNA delivery. While all of these systems protect siRNA and enhance transfection efficacy, each exhibits its unique strengths. Lipid-based delivery systems, for instance, demonstrate high entrapment efficacy and utilize cost-effective materials. Conversely, polymeric-based delivery systems offer advantages through chemical modifications. Nonetheless, certain drawbacks still limit their usage. To address these limitations, combining different materials in formulations (lipid, polymer, or targeting agent) could enhance pharmaceutical properties, boost transfection efficacy, and reduce side effects. Furthermore, co-delivery of siRNA with other therapeutic agents presents a promising strategy to overcome cancer resistance. Lipid-based delivery systems have been demonstrated to encapsulate many therapeutic agents and with high efficiency, but most are limited in terms of the functionalities they display. In contrast, polymeric-based delivery systems can be chemically modified by a wide variety of routes to include multiple components, such as release or targeting elements, from the same materials backbone. Accordingly, by incorporating multiple materials such as lipids, polymers, and/or targeting agents in RNA formulations it is possible to improve the pharmaceutical properties and therapeutic efficacy while reducing side effects. This review focuses on strategies to improve siRNA cancer treatments and discusses future prospects in this important field.
Collapse
Affiliation(s)
- Nazgol Karimi Dastgerdi
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK; Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazanin Karimi Dastgerdi
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hulya Bayraktutan
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | | | - Fatemeh Atyabi
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran
| | - Rassoul Dinarvand
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614315, Iran.
| | | | - Cameron Alexander
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, NG7 2RD, UK
| | - Claudia Conte
- Department of Pharmacy, University of Napoli Federico II, Napoli, Italy.
| |
Collapse
|
5
|
Ding Y, Zhang S, Li W, Chen X, Li J, Zhang X, Zhang Z, Hu Y, Yang Z, Hu ZW, Shen X. Enzyme-Instructed Photoactivatable Supramolecular Antigens on Cancer Cell Membranes for Precision-Controlled T-Cell-Based Cancer Immunotherapy. NANO LETTERS 2024. [PMID: 38838340 DOI: 10.1021/acs.nanolett.4c01587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Cancer immunotherapies based on cytotoxic CD8+ T lymphocytes (CTLs) are highly promising for cancer treatment. The specific interaction between T-cell receptors and peptide-MHC-I complexes (pMHC-I) on cancer cell membranes critically determines their therapeutic outcomes. However, the lack of appropriate endogenous antigens for MHC-I presentation disables tumor recognition by CTLs. By devising three antigen-loaded self-assembling peptides of pY-K(Ag)-ERGD, pY-K(Ag)-E, and Y-K(Ag)-ERGD to noncovalently generate light-activatable supramolecular antigens at tumor sites in different manners, we report pY-K(Ag)-ERGD as a promising candidate to endow tumor cells with pMHC-I targets on demand. Specifically, pY-K(Ag)-ERGD first generates low-antigenic supramolecular antigens on cancer cell membranes, and a successive light pulse allows antigen payloads to efficiently release from the supramolecular scaffold, directly producing antigenic pMHC-I. Intravenous administration of pY-K(Ag)-ERGD enables light-controlled tumor inhibition when combined with adoptively transferred antigen-specific CTLs. Our strategy is feasible for broadening tumor antigen repertoires for T-cell immunotherapies and advancing precision-controlled T-cell immunotherapies.
Collapse
Affiliation(s)
- Yinghao Ding
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Shengyi Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Wei Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiaodong Chen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Jun Li
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xiangyang Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhenghao Zhang
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Yuanbo Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| | - Zhimou Yang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Zhi-Wen Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
- Key Laboratory of Bioactive Materials, Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Xian Shen
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, Zhejiang Province, P. R. China
| |
Collapse
|
6
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Moazzam M, Zhang M, Hussain A, Yu X, Huang J, Huang Y. The landscape of nanoparticle-based siRNA delivery and therapeutic development. Mol Ther 2024; 32:284-312. [PMID: 38204162 PMCID: PMC10861989 DOI: 10.1016/j.ymthe.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/01/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024] Open
Abstract
Five small interfering RNA (siRNA)-based therapeutics have been approved by the Food and Drug Administration (FDA), namely patisiran, givosiran, lumasiran, inclisiran, and vutrisiran. Besides, siRNA delivery to the target site without toxicity is a big challenge for researchers, and naked-siRNA delivery possesses several challenges, including membrane impermeability, enzymatic degradation, mononuclear phagocyte system (MPS) entrapment, fast renal excretion, endosomal escape, and off-target effects. The siRNA therapeutics can silence any disease-specific gene, but their intracellular and extracellular barriers limit their clinical applications. For this purpose, several modifications have been employed to siRNA for better transfection efficiency. Still, there is a quest for better delivery systems for siRNA delivery to the target site. In recent years, nanoparticles have shown promising results in siRNA delivery with minimum toxicity and off-target effects. Patisiran is a lipid nanoparticle (LNP)-based siRNA formulation for treating hereditary transthyretin-mediated amyloidosis that ultimately warrants the use of nanoparticles from different classes, especially lipid-based nanoparticles. These nanoparticles may belong to different categories, including lipid-based, polymer-based, and inorganic nanoparticles. This review briefly discusses the lipid, polymer, and inorganic nanoparticles and their sub-types for siRNA delivery. Finally, several clinical trials related to siRNA therapeutics are addressed, followed by the future prospects and conclusions.
Collapse
Affiliation(s)
- Muhammad Moazzam
- Faculty of Engineering and Science, University of Greenwich, Medway Campus, Chatham Maritime, Kent ME4 4TB, UK
| | - Mengjie Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Abid Hussain
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaotong Yu
- Department of Immunology, School of Basic Medical Sciences, Key Laboratory of Medical Immunology of Ministry of Health, Peking University, Beijing 100191, China.
| | - Jia Huang
- Department of Hepatobiliary Surgery, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, School of Medical Technology, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing 100081, China; Rigerna Therapeutics Co. Ltd., Suzhou 215127, China.
| |
Collapse
|
8
|
Bao Q, Ganbold T, Bao M, Xiao H, Han S, Baigude H. Tumor targeted siRNA delivery by adenosine receptor-specific curdlan nanoparticles. Int J Biol Macromol 2023; 253:126845. [PMID: 37703972 DOI: 10.1016/j.ijbiomac.2023.126845] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/15/2023]
Abstract
Aminated curdlan derivatives are highly effective nucleic acid carriers. Previously, we proved that the ligand-functionalized curdlan derivatives have greatly enhanced cell type specificity induced by receptor-mediated internalization in vitro. In this study, to improve biocompatibility and enhance tumor-targeting efficacy of the curdlan derivative, we pegylated the adenosine functionalized amino curdlan derivative (denoted by pAVC polymer). We confirmed that the uptake of pAVC polymer carrying siRNA by tumor cells was adenosine receptor (AR)-dependent and was specifically inhibited by AMP but not by GMP. The pAVC polymers not only preserved the receptor recognition and exhibited significantly decreased cytotoxicity but also showed remarkable tumor targeting efficiency in vivo. The nanoparticles formulated from siRNA (against STAT3) and pAVC4 polymer, which bears the highest degree of PEG substitution, delivered siRNA highly specifically to tumor tissue, knocked down STAT3, and inhibited tumor growth. The pAVC polymers may be a promising carrier for tumor specific delivery of nucleic acid drugs.
Collapse
Affiliation(s)
- Qingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Tsogzolmaa Ganbold
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Mingming Bao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Hai Xiao
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Shuqin Han
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Huricha Baigude
- Inner Mongolia Key Laboratory of Mongolian Medicinal Chemistry, School of Chemistry & Chemical Engineering, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| |
Collapse
|
9
|
Zhang J, Chen B, Gan C, Sun H, Zhang J, Feng L. A Comprehensive Review of Small Interfering RNAs (siRNAs): Mechanism, Therapeutic Targets, and Delivery Strategies for Cancer Therapy. Int J Nanomedicine 2023; 18:7605-7635. [PMID: 38106451 PMCID: PMC10725753 DOI: 10.2147/ijn.s436038] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023] Open
Abstract
Small interfering RNA (siRNA) delivery by nanocarriers has been identified as a promising strategy in the study and treatment of cancer. Short nucleotide sequences are synthesized exogenously to create siRNA, which triggers RNA interference (RNAi) in cells and silences target gene expression in a sequence-specific way. As a nucleic acid-based medicine that has gained popularity recently, siRNA exhibits novel potential for the treatment of cancer. However, there are still many obstacles to overcome before clinical siRNA delivery devices can be developed. In this review, we discuss prospective targets for siRNA drug design, explain siRNA drug properties and benefits, and give an overview of the current clinical siRNA therapeutics for the treatment of cancer. Additionally, we introduce the siRNA chemical modifications and delivery systems that are clinically sophisticated and classify bioresponsive materials for siRNA release in a methodical manner. This review will serve as a reference for researchers in developing more precise and efficient targeted delivery systems, promoting ongoing advances in clinical applications.
Collapse
Affiliation(s)
- Jiaying Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Bo Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Chunyuan Gan
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Hongyan Sun
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Institute of Liver Diseases, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Lin Feng
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, People’s Republic of China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, People’s Republic of China
| |
Collapse
|
10
|
Ma T, Li W, Ye J, Huang C, Li Y, Qiu H, Yin S. GSH/pH dual response drug delivery system for photothermal enhanced gene-immunotherapy. NANOSCALE 2023; 15:16947-16958. [PMID: 37779508 DOI: 10.1039/d3nr03881e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Breast cancer has emerged as a leading cause of mortality among women. Photothermal therapy represents a recent therapeutic modality for eradicating localized tumors, albeit hindered by its limited penetration into tumor tissues. Recognizing the potential of photothermal therapy to induce immunogenic cell death in tumor cells, we explored a gene delivery approach utilizing small interfering RNA targeting programmed death ligand 1 (PD-L1), abbreviated as siPD-L1, to bolster the anti-tumor immune response elicited by this therapy. Nonetheless, the suboptimal release efficiency and inherent instability of RNA molecules have posed challenges to their therapeutic efficacy. In this study, we designed a glutathione (GSH)/pH-responsive micelle system, employing biocompatible and low-toxicity polyethyleneimine in conjunction with structurally robust pluronic P123, to encapsulate both indocyanine green (ICG) and siPD-L1 for precise targeting in breast cancer treatment. The resulting PSP/ICG/siPD-L1 nanocarrier demonstrated admirable biocompatibility and stability. Upon internalization into tumor cells, this nanocarrier exhibited rapid release of both ICG and siPD-L1, responding to the acidic tumor microenvironment and GSH conditions. The inclusion of siPD-L1 effectively downregulated the expression of PD-L1 on the tumor cell surface, thereby impeding tumor growth. Additionally, ICG demonstrated a photothermal effect when exposed to near-infrared light. Both in vitro and in vivo investigations substantiated the nanocarrier's efficacy against tumor cells, culminating in the complete ablation of 4T1 tumors in situ. Consequently, PSP/ICG/siPD-L1 emerges as a promising nanocarrier candidate for augmenting anti-tumor immunity through the synergistic combination of photothermal therapy and gene-based intervention.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Wen Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Jingtao Ye
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Chenchen Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Yang Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Huayu Qiu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology, Hangzhou 311121, Zhejiang Province, P. R. China.
| |
Collapse
|
11
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
12
|
Jiang L, Qi Y, Yang L, Miao Y, Ren W, Liu H, Huang Y, Huang S, Chen S, Shi Y, Cai L. Remodeling the tumor immune microenvironment via siRNA therapy for precision cancer treatment. Asian J Pharm Sci 2023; 18:100852. [PMID: 37920650 PMCID: PMC10618707 DOI: 10.1016/j.ajps.2023.100852] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 08/02/2023] [Indexed: 11/04/2023] Open
Abstract
How to effectively transform the pro-oncogenic tumor microenvironments (TME) surrounding a tumor into an anti-tumoral never fails to attract people to study. Small interfering RNA (siRNA) is considered one of the most noteworthy research directions that can regulate gene expression following a process known as RNA interference (RNAi). The research about siRNA delivery targeting tumor cells and TME has been on the rise in recent years. Using siRNA drugs to silence critical proteins in TME was one of the most efficient solutions. However, the manufacture of a siRNA delivery system faces three major obstacles, i.e., appropriate cargo protection, accurately targeted delivery, and site-specific cargo release. In the following review, we summarized the pharmacological actions of siRNA drugs in remolding TME. In addition, the delivery strategies of siRNA drugs and combination therapy with siRNA drugs to remodel TME are thoroughly discussed. In the meanwhile, the most recent advancements in the development of all clinically investigated and commercialized siRNA delivery technologies are also presented. Ultimately, we propose that nanoparticle drug delivery siRNA may be the future research focus of oncogene therapy. This summary offers a thorough analysis and roadmap for general readers working in the field.
Collapse
Affiliation(s)
- Lingxi Jiang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yao Qi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Lei Yang
- Department of Pharmacy, Jianyang People's Hospital of Sichuan Province, Jianyang 641400, China
| | - Yangbao Miao
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Weiming Ren
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Hongmei Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shan Huang
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Shiyin Chen
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yi Shi
- Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Lulu Cai
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| |
Collapse
|
13
|
Qian L, Lin X, Gao X, Khan RU, Liao JY, Du S, Ge J, Zeng S, Yao SQ. The Dawn of a New Era: Targeting the "Undruggables" with Antibody-Based Therapeutics. Chem Rev 2023. [PMID: 37186942 DOI: 10.1021/acs.chemrev.2c00915] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The high selectivity and affinity of antibodies toward their antigens have made them a highly valuable tool in disease therapy, diagnosis, and basic research. A plethora of chemical and genetic approaches have been devised to make antibodies accessible to more "undruggable" targets and equipped with new functions of illustrating or regulating biological processes more precisely. In this Review, in addition to introducing how naked antibodies and various antibody conjugates (such as antibody-drug conjugates, antibody-oligonucleotide conjugates, antibody-enzyme conjugates, etc.) work in therapeutic applications, special attention has been paid to how chemistry tools have helped to optimize the therapeutic outcome (i.e., with enhanced efficacy and reduced side effects) or facilitate the multifunctionalization of antibodies, with a focus on emerging fields such as targeted protein degradation, real-time live-cell imaging, catalytic labeling or decaging with spatiotemporal control as well as the engagement of antibodies inside cells. With advances in modern chemistry and biotechnology, well-designed antibodies and their derivatives via size miniaturization or multifunctionalization together with efficient delivery systems have emerged, which have gradually improved our understanding of important biological processes and paved the way to pursue novel targets for potential treatments of various diseases.
Collapse
Affiliation(s)
- Linghui Qian
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xuefen Lin
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xue Gao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rizwan Ullah Khan
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jia-Yu Liao
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shubo Du
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Jingyan Ge
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Cancer Center, & Hangzhou Institute of Innovative Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544
| |
Collapse
|
14
|
Zhu C, Wang W, Wang Y, Zhang Y, Li J. Dendronized DNA Chimeras Harness Scavenger Receptors To Degrade Cell Membrane Proteins. Angew Chem Int Ed Engl 2023; 62:e202300694. [PMID: 36734217 DOI: 10.1002/anie.202300694] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/04/2023]
Abstract
Bispecific chimeras bridging cell membrane proteins with lysosome-trafficking receptors (LTRs) provide an effective therapeutic approach through lysosomal degradation of disease-relevant targets. Here, we report a novel dendronized DNA chimera (DENTAC) strategy that uses a dendritic DNA to engage cell surface scavenger receptors (SRs) as LTR. Using bioorthogonal strain-promoted alkyne-azide cycloaddition to conjugate the dendritic DNA with protein binder, the resulting DENTAC is able to traffic the protein target into the lysosome for elimination. We demonstrated the utility of DENTAC by degrading oncogenic membrane nucleolin (NCL) and epidermal growth factor receptor (EGFR). The anti-cancer application of NCL-targeting DENTAC was validated in a mouse xenograft model of lung cancer. This work thus presents a new avenue for rapid development of potent degraders against membrane proteins, with also broad research and therapeutic prospects.
Collapse
Affiliation(s)
- Chenghong Zhu
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Weishan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
15
|
Zhang Q, Kuang G, Li W, Wang J, Ren H, Zhao Y. Stimuli-Responsive Gene Delivery Nanocarriers for Cancer Therapy. NANO-MICRO LETTERS 2023; 15:44. [PMID: 36752939 PMCID: PMC9908819 DOI: 10.1007/s40820-023-01018-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Gene therapy provides a promising approach in treating cancers with high efficacy and selectivity and few adverse effects. Currently, the development of functional vectors with safety and effectiveness is the intense focus for improving the delivery of nucleic acid drugs for gene therapy. For this purpose, stimuli-responsive nanocarriers displayed strong potential in improving the overall efficiencies of gene therapy and reducing adverse effects via effective protection, prolonged blood circulation, specific tumor accumulation, and controlled release profile of nucleic acid drugs. Besides, synergistic therapy could be achieved when combined with other therapeutic regimens. This review summarizes recent advances in various stimuli-responsive nanocarriers for gene delivery. Particularly, the nanocarriers responding to endogenous stimuli including pH, reactive oxygen species, glutathione, and enzyme, etc., and exogenous stimuli including light, thermo, ultrasound, magnetic field, etc., are introduced. Finally, the future challenges and prospects of stimuli-responsive gene delivery nanocarriers toward potential clinical translation are well discussed. The major objective of this review is to present the biomedical potential of stimuli-responsive gene delivery nanocarriers for cancer therapy and provide guidance for developing novel nanoplatforms that are clinically applicable.
Collapse
Affiliation(s)
- Qingfei Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Gaizhen Kuang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Wenzhao Li
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, People's Republic of China
| | - Jinglin Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Haozhen Ren
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
| | - Yuanjin Zhao
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Hepatobiliary Institute of Nanjing University, Nanjing, 210008, People's Republic of China.
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, People's Republic of China.
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
16
|
Xue L, Yu D, Sun J, Guan L, Xie C, Wang L, Jia Y, Tian J, Fan H, Sun H. Rapid GSH detection and versatile peptide/protein labelling to track cell penetration using coumarin-based probes. Analyst 2023; 148:532-538. [PMID: 36349786 DOI: 10.1039/d2an01510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.
Collapse
Affiliation(s)
- Li Xue
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China. .,School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P. R. China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, P. R. China
| | - Chengzhi Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
17
|
Li G, Zhang Y, Li J. A hybrid nanoassembly for ultrasound-inducible cytosolic siRNA delivery and cancer sono-gene therapy. ULTRASONICS SONOCHEMISTRY 2023; 92:106262. [PMID: 36512940 PMCID: PMC9763732 DOI: 10.1016/j.ultsonch.2022.106262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/02/2022] [Accepted: 12/06/2022] [Indexed: 05/10/2023]
Abstract
Cancer gene therapy by small-interfering RNAs (siRNAs) holds great promise but is impeded by a low cytoplasmic delivery efficiency. The past two decades have witnessed many efforts that are dedicated to discover biomaterials in order to increase cellular uptake efficiency of siRNAs. However, less attention has been paid to the lysosomal trapping dilemma that greatly restricts gene silencing outcomes. Herein, to address this challenge, we developed a sono-controllable strategy for ultrasound-promoted cytosolic siRNA delivery. A hybrid nanoassembly (HNA) was prepared via electrostatic self-assembly of a siRNA and a nona-arginine modified with protoporphyrin IX that is a sonosensitizer. After cellular uptake and exposure to sono-irradiation, HNA generated singlet oxygen to facilitate the lysosomal escape of siRNA to knock down anti-apoptotic Bcl-2 in the cytoplasm. We showed that the colocalization ratios between siRNA and the lysosome decreased from 91 % to 33 % post sono-irradiation; meanwhile, the gene silencing efficacy increased from 46 % to 68 % at 300 nM of HNA. Furthermore, sonodynamic therapy was achieved by the sonosensitizer under ultrasound irradiation, which combined gene therapy to eradicate cancer cells, resulting in a cell death rate of 82 %. This study thus presents a novel ultrasonic approach for effective cytoplasmic delivery of siRNAs and combinational sono-gene therapy of cancer.
Collapse
Affiliation(s)
- Gaigai Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jinbo Li
- State Key Laboratory of Analytical Chemistry for Life Sciences, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
18
|
Noncoding RNAs Emerging as Drugs or Drug Targets: Their Chemical Modification, Bio-Conjugation and Intracellular Regulation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196717. [PMID: 36235253 PMCID: PMC9573214 DOI: 10.3390/molecules27196717] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/07/2022]
Abstract
With the increasing understanding of various disease-related noncoding RNAs, ncRNAs are emerging as novel drugs and drug targets. Nucleic acid drugs based on different types of noncoding RNAs have been designed and tested. Chemical modification has been applied to noncoding RNAs such as siRNA or miRNA to increase the resistance to degradation with minimum influence on their biological function. Chemical biological methods have also been developed to regulate relevant noncoding RNAs in the occurrence of various diseases. New strategies such as designing ribonuclease targeting chimeras to degrade endogenous noncoding RNAs are emerging as promising approaches to regulate gene expressions, serving as next-generation drugs. This review summarized the current state of noncoding RNA-based theranostics, major chemical modifications of noncoding RNAs to develop nucleic acid drugs, conjugation of RNA with different functional biomolecules as well as design and screening of potential molecules to regulate the expression or activity of endogenous noncoding RNAs for drug development. Finally, strategies of improving the delivery of noncoding RNAs are discussed.
Collapse
|
19
|
Zhou LL, Guan Q, Zhou W, Kan JL, Dong YB. Ambient synthesis of an iminium-linked covalent organic framework for synergetic RNA interference and metabolic therapy of fibrosarcoma. Chem Sci 2022; 13:7846-7854. [PMID: 35865896 PMCID: PMC9258322 DOI: 10.1039/d2sc02297d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
Small interfering RNA (siRNA)-mediated gene silencing is a promising therapeutic approach. Herein, we report the ambient synthesis of a positively charged iminium-linked covalent organic framework by a three-component one-pot reaction. Through anion exchange and siRNA adsorption, the resulting multifunctional siRNA@ABMBP-COF, which possesses both the HK2 inhibitor 3-bromopyruvate and SLC7A11 siRNA, exhibits powerful synergistic antitumor activity against fibrosarcoma via the ferroptosis and apoptosis pathways.
Collapse
Affiliation(s)
- Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Wei Zhou
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University Jinan 250021 China
| | - Jing-Lan Kan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 China
| |
Collapse
|