1
|
Diessner EM, Takahashi GR, Butts CT, Martin RW. Comparative analysis of thermal adaptations of extremophilic prolyl oligopeptidases. Biophys J 2024; 123:3143-3162. [PMID: 39014897 PMCID: PMC11427779 DOI: 10.1016/j.bpj.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
Prolyl oligopeptidases from psychrophilic, mesophilic, and thermophilic organisms found in a range of natural environments are studied using a combination of protein structure prediction, atomistic molecular dynamics, and trajectory analysis to determine how the S9 protease family adapts to extreme thermal conditions. We compare our results with hypotheses from the literature regarding structural adaptations that allow proteins to maintain structure and function at extreme temperatures, and we find that, in the case of prolyl oligopeptidases, only a subset of proposed adaptations are employed for maintaining stability. The catalytic and propeller domains are highly structured, limiting the range of mutations that can be made to enhance hydrophobicity or form disulfide bonds without disrupting the formation of necessary secondary structure. Rather, we observe a pattern in which overall prevalence of bound interactions (salt bridges and hydrogen bonds) is conserved by using increasing numbers of increasingly short-lived interactions as temperature increases. This suggests a role for an entropic rather than energetic strategy for thermal adaptation in this protein family.
Collapse
Affiliation(s)
| | - Gemma R Takahashi
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California
| | - Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, Irvine, California.
| | - Rachel W Martin
- Department of Chemistry, University of California, Irvine, Irvine, California; Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California.
| |
Collapse
|
2
|
Dürvanger Z, Bencs F, Menyhárd DK, Horváth D, Perczel A. Solvent induced amyloid polymorphism and the uncovering of the elusive class 3 amyloid topology. Commun Biol 2024; 7:968. [PMID: 39122990 PMCID: PMC11316126 DOI: 10.1038/s42003-024-06621-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Aggregation-prone-motifs (APRs) of proteins are short segments, which - as isolated peptides - form diverse amyloid-like crystals. We introduce two APRs - designed variants of the incretin mimetic Exendin-4 - that both display crystal-phase polymorphism. Crystallographic and spectroscopic analysis revealed that a single amino-acid substitution can greatly reduce topological variability: while LYIQWL can form both parallel and anti-parallel β-sheets, LYIQNL selects only the former. We also found that the parallel/anti-parallel switch of LYIQWL can be induced by simply changing the crystallization temperature. One crystal form of LYIQNL was found to belong to the class 3 topology, an arrangement previously not encountered among proteinogenic systems. We also show that subtle environmental changes lead to crystalline assemblies with different topologies, but similar interfaces. Spectroscopic measurements showed that polymorphism is already apparent in the solution state. Our results suggest that the temperature-, sequence- and environmental sensitivity of physiological amyloids is reflected in assemblies of the APR segments, which, complete with the new class 3 crystal form, effectively sample all the originally proposed basic topologies of amyloid-like aggregates.
Collapse
Affiliation(s)
- Zsolt Dürvanger
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Fruzsina Bencs
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - Dániel Horváth
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
- HUN-REN-ELTE Protein Modeling Research Group, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117, Budapest, Hungary.
| |
Collapse
|
3
|
Chandravanshi K, Singh R, Bhange GN, Kumar A, Yadav P, Kumar A, Makde RD. Crystal structure and solution scattering of Geobacillus stearothermophilus S9 peptidase reveal structural adaptations for carboxypeptidase activity. FEBS Lett 2024; 598:684-701. [PMID: 38426217 DOI: 10.1002/1873-3468.14834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Acylaminoacyl peptidases (AAPs) play a pivotal role in various pathological conditions and are recognized as potential therapeutic targets. AAPs exhibit a wide range of activities, such as acylated amino acid-dependent aminopeptidase, endopeptidase, and less studied carboxypeptidase activity. We have determined the crystal structure of an AAP from Geobacillus stearothermophilus (S9gs) at 2.0 Å resolution. Despite being annotated as an aminopeptidase in the NCBI database, our enzymatic characterization proved S9gs to be a carboxypeptidase. Solution-scattering studies showed that S9gs exists as a tetramer in solution, and crystal structure analysis revealed adaptations responsible for the carboxypeptidase activity of S9gs. The findings present a hypothesis for substrate selection, substrate entry, and product exit from the active site, enriching our understanding of this rare carboxypeptidase.
Collapse
Affiliation(s)
| | - Rahul Singh
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Gauri N Bhange
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Ashwani Kumar
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Pooja Yadav
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| | - Amit Kumar
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Indore, India
| | - Ravindra D Makde
- Beamline Development and Application Section, Bhabha Atomic Research Centre, Mumbai, India
| |
Collapse
|
4
|
Chmelova K, Gao T, Polak M, Schenkmayerova A, Croll TI, Shaikh TR, Skarupova J, Chaloupkova R, Diederichs K, Read RJ, Damborsky J, Novacek J, Marek M. Multimeric structure of a subfamily III haloalkane dehalogenase-like enzyme solved by combination of cryo-EM and x-ray crystallography. Protein Sci 2023; 32:e4751. [PMID: 37574754 PMCID: PMC10503415 DOI: 10.1002/pro.4751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/25/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Haloalkane dehalogenase (HLD) enzymes employ an SN 2 nucleophilic substitution mechanism to erase halogen substituents in diverse organohalogen compounds. Subfamily I and II HLDs are well-characterized enzymes, but the mode and purpose of multimerization of subfamily III HLDs are unknown. Here we probe the structural organization of DhmeA, a subfamily III HLD-like enzyme from the archaeon Haloferax mediterranei, by combining cryo-electron microscopy (cryo-EM) and x-ray crystallography. We show that full-length wild-type DhmeA forms diverse quaternary structures, ranging from small oligomers to large supramolecular ring-like assemblies of various sizes and symmetries. We optimized sample preparation steps, enabling three-dimensional reconstructions of an oligomeric species by single-particle cryo-EM. Moreover, we engineered a crystallizable mutant (DhmeAΔGG ) that provided diffraction-quality crystals. The 3.3 Å crystal structure reveals that DhmeAΔGG forms a ring-like 20-mer structure with outer and inner diameter of ~200 and ~80 Å, respectively. An enzyme homodimer represents a basic repeating building unit of the crystallographic ring. Three assembly interfaces (dimerization, tetramerization, and multimerization) were identified to form the supramolecular ring that displays a negatively charged exterior, while its interior part harboring catalytic sites is positively charged. Localization and exposure of catalytic machineries suggest a possible processing of large negatively charged macromolecular substrates.
Collapse
Affiliation(s)
- Klaudia Chmelova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tadeja Gao
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Martin Polak
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Andrea Schenkmayerova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Tristan I. Croll
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Tanvir R. Shaikh
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
- Institute of NeuropathologyUniversity Medical Center GöttingenGöttingenGermany
| | - Jana Skarupova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Radka Chaloupkova
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Kay Diederichs
- Department of BiologyUniversity of KonstanzKonstanzGermany
| | - Randy J. Read
- Department of Hematology, Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | - Jiri Damborsky
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| | - Jiri Novacek
- Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
| | - Martin Marek
- Loschmidt Laboratories, Department of Experimental Biology and RECETOX, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
- International Clinical Research CenterSt. Anne's University Hospital BrnoBrnoCzech Republic
| |
Collapse
|
5
|
Tsevelkhoroloo M, Dhakshnamoorthy V, Hong YS, Lee CR, Hong SK. Bifunctional and monofunctional α-neoagarooligosaccharide hydrolases from Streptomyces coelicolor A3(2). Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12552-x. [PMID: 37184654 DOI: 10.1007/s00253-023-12552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/11/2023] [Accepted: 04/15/2023] [Indexed: 05/16/2023]
Abstract
Agar is a galactan and a major component of the red algal cell wall. Agar is metabolized only by specific microorganisms. The final step of the β-agarolytic pathway is mediated by α-neoagarooligosaccharide hydrolase (α-NAOSH), which cleaves neoagarobiose to D-galactose and 3,6-anhydro-α-L-galactose. In the present study, two α-NAOSHs, SCO3481 and SCO3479, were identified in Streptomyces coelicolor A3(2). SCO3481 (370 amino acids, 41.12 kDa) and SCO3479 (995 amino acids, 108.8 kDa) catalyzed the hydrolysis of the α-(1,3) glycosidic bonds of neoagarobiose, neoagarotetraose, and neoagarohexaose at the nonreducing ends, releasing 3,6-anhydro-α-L-galactose. Both were intracellular proteins without any signal peptides for secretion. Similar to all α-NAOSHs reported to date, SCO3481 belonged to the glycosyl hydrolase (GH) 117 family and formed dimers. On the other hand, SCO3479 was a large monomeric α-NAOSH belonging to the GH2 family with a β-galactosidase domain. SCO3479 also clearly showed β-galactosidase activity toward lactose and artificial substrates, but SCO3481 did not. The optimum conditions for α-NAOSH were pH 6.0 and 25 °C for SCO3481, and pH 6.0 and 30 °C for SCO3479. Enzymatic activity was enhanced by Co2+ for SCO3481 and Mg2+ for SCO3479. The β-galactosidase activity of SCO3479 was maximum at pH 7.0 and 50 °C and was increased by Mg2+. Many differences were evident in the kinetic parameters of each enzyme. Although SCO3481 is typical of the GH117 family, SCO3479 is a novel α-NAOSH that was first reported in the GH2 family. SCO3479, a unique bifunctional enzyme with α-NAOSH and β-galactosidase activities, has many advantages for industrial applications. KEY POINTS: • SCO3481 is a dimeric α-neoagarooligosaccharide hydrolase belonging to GH117. • SCO3479 is a monomeric α-neoagarooligosaccharide hydrolase belonging to GH2. • SCO3479 is a novel and unique bifunctional enzyme that also acts as a β-galactosidase.
Collapse
Affiliation(s)
- Maral Tsevelkhoroloo
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Vijayalakshmi Dhakshnamoorthy
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Young-Soo Hong
- Anticancer Agent Research Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-Ro, Cheongju, Chungbuk, 28116, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, 116 Myongji-Ro, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
6
|
Kiss-Szemán AJ, Takács L, Orgován Z, Stráner P, Jákli I, Schlosser G, Masiulis S, Harmat V, Menyhárd DK, Perczel A. A carbapenem antibiotic inhibiting a mammalian serine protease: structure of the acylaminoacyl peptidase-meropenem complex. Chem Sci 2022; 13:14264-14276. [PMID: 36545146 PMCID: PMC9749117 DOI: 10.1039/d2sc05520a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/06/2022] [Indexed: 11/10/2022] Open
Abstract
The structure of porcine AAP (pAAP) in a covalently bound complex with meropenem was determined by cryo-EM to 2.1 Å resolution, showing the mammalian serine-protease inhibited by a carbapenem antibiotic. AAP is a modulator of the ubiquitin-proteasome degradation system and the site of a drug-drug interaction between the widely used antipsychotic, valproate and carbapenems. The active form of pAAP - a toroidal tetramer - binds four meropenem molecules covalently linked to the catalytic Ser587 of the serine-protease triad, in an acyl-enzyme state. AAP is hindered from fully processing the antibiotic by the displacement and protonation of His707 of the catalytic triad. We show that AAP is made susceptible to the association by its unusually sheltered active pockets and flexible catalytic triads, while the carbapenems possess sufficiently small substituents on their β-lactam rings to fit into the shallow substrate-specificity pocket of the enzyme.
Collapse
Affiliation(s)
- Anna J Kiss-Szemán
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
| | - Luca Takács
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
| | - Zoltán Orgován
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences Budapest Hungary
| | - Pál Stráner
- ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network Budapest Hungary +36-1-372-2500/1653 +36-1-372-2500/6547
| | - Imre Jákli
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
- ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network Budapest Hungary +36-1-372-2500/1653 +36-1-372-2500/6547
| | - Gitta Schlosser
- ELKH-ELTE Lendület Ion Mobility Mass Spectrometry Research Group, Institute of Chemistry, Eötvös Loránd University Budapest Hungary
| | - Simonas Masiulis
- Materials and Structural Analysis Division, Thermo Fisher Scientific Eindhoven The Netherlands
| | - Veronika Harmat
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
- ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network Budapest Hungary +36-1-372-2500/1653 +36-1-372-2500/6547
| | - Dóra K Menyhárd
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
- ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network Budapest Hungary +36-1-372-2500/1653 +36-1-372-2500/6547
| | - András Perczel
- Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös Loránd University Pázmány Péter sétány 1/A Budapest Hungary
- ELKH-ELTE Protein Modelling Research Group, Eötvös Loránd Research Network Budapest Hungary +36-1-372-2500/1653 +36-1-372-2500/6547
| |
Collapse
|