1
|
Ye CZ, Del Rosal I, Ouellette ET, Hohloch S, Maron L, Camp C, Arnold J. Reduction of CS 2 to an ethanetetrathiolate by a hydride-bridged uranium-iridium heterobimetallic complex. Chem Commun (Camb) 2024; 60:12377-12380. [PMID: 39370889 DOI: 10.1039/d4cc02482f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We report the synthesis of a heterobimetallic U(III)-Ir species which reacts with CS2 to form the novel ethanetetrathiolate fragment via hydride insertion and C-C coupling. Computational studies suggest the formation of a radical intermediate, which may couple with another equivalent to form the final product.
Collapse
Affiliation(s)
- Christopher Z Ye
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Iker Del Rosal
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Erik T Ouellette
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephan Hohloch
- University of Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Laurent Maron
- Université de Toulouse, CNRS, INSA, UPS, UMR 5215, LPCNO, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | - Clément Camp
- Laboratory of Catalysis, Polymerization, Processes and Materials (CP2M UMR 5128) CNRS, Universite Claude Bernard Lyon 1, CPE-Lyon, Institut de Chimie de Lyon, 43 Bvd du 11 Novembre 1918, 69616 Villeurbanne, France.
| | - John Arnold
- Department of Chemistry, University of California, Berkeley, California 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
2
|
Patra K, Brennessel WW, Matson EM. Molecular Models of Atomically Dispersed Uranium at MoS 2 Surfaces Reveal Cooperative Mechanism of Water Reduction. J Am Chem Soc 2024; 146:20147-20157. [PMID: 38984489 PMCID: PMC11273346 DOI: 10.1021/jacs.4c05002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
Single atoms of uranium supported on molybdenum sulfide surfaces (U@MoS2) have been recently demonstrated to facilitate the hydrogen evolution reaction (HER) through electrocatalysis. Theoretical calculations have predicted uranium hydroxide moieties bound to edge-sulfur atoms of MoS2 as a proposed transition state involved in the HER process. However, the isolation of relevant intermediates involved in this process remains a challenge, rendering mechanistic hypotheses unverified. The present work describes the isolation and characterization of a uranium-hydroxide intermediate on molybdenum sulfide surfaces using [(Cp*3Mo3S4)UCp*], a molecular model of a reduced uranium center supported at MoS2. Mechanistic investigations highlight the metalloligand cooperativity with uranium involved in the water activation pathway. The corresponding uranium-oxo analogue, [(Cp*3Mo3S4)Cp*U(═O)], was also accessed from the hydroxide cluster via hydrogen atom transfer and from [(Cp*3Mo3S4)UCp*] through an alternative direct oxygen atom transfer. These results provide an atomistic perspective on the reactivity of low-valent uranium at molybdenum sulfide surfaces toward water, modeling key intermediates associated with the HER of U@MoS2 catalysts.
Collapse
Affiliation(s)
- Kamaless Patra
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - William W. Brennessel
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| | - Ellen M. Matson
- Department of Chemistry, University of Rochester, Rochester, New York 14627, United States
| |
Collapse
|
3
|
Dovrat G, Pevzner S, Maimon E, Bogoslavsky B, Ben-Eliyahu Y, Moisy P, Bettelheim A, Zilbermann I. Macrocyclic Ligand Coordinating Amide-Arm Hydrolysis Reaction Activation in Aqueous Solutions: Tetravalent Uranium Does It Better. Inorg Chem 2024; 63:400-415. [PMID: 38150742 DOI: 10.1021/acs.inorgchem.3c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Chelation of lanthanide and actinide cations within a suitable macrocyclic ligand often results in a rigid, kinetically inert, and thermodynamically stable complex. A benchmark for such cation-ligand suitability are cyclen-derived macrocyclic ligands, frequently used as large cation hosts for various applications. Herein, a comprehensive study of the 1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane ligand (DOTAM) chelates of UIV and CeIII and their properties in aqueous solutions is presented. By employing multiple analysis techniques, including X-ray crystallography, UV-vis absorbance, 1H NMR, UPLC-MS, cyclic voltammetry, and differential pulse voltammetry, the study has revealed that the two aqueous complexes undergo a spontaneous, gradual, and stepwise hydrolysis of each of the coordinated amides toward carboxylates. The coordination of UIV in the studied reaction has been shown to significantly enhance the reaction rate, leading to an acceleration of up to 6 orders of magnitude compared to the natural process of simple aqueous amides at room temperature. An attempt to describe the unusual chelated metal cation amide-activation feature, based on the relatively lower rigidity of the complex structure, is presented. Additionally, the electrochemical properties of the complex series are discussed in detail, along with the limitations of the analytical methods employed.
Collapse
Affiliation(s)
- Gev Dovrat
- Energy Engineering Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Svetlana Pevzner
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
| | - Eric Maimon
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Benny Bogoslavsky
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem 9190401, Israel
| | | | - Philippe Moisy
- CEA, DES, ISEC, DMRC, Univ, Marcoule, Bagnols-sur-cèze 30200, France
| | - Armand Bettelheim
- Chemical Engineering Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Israel Zilbermann
- Chemistry Department, Nuclear Research Centre Negev, Beer Sheva 84190, Israel
- Chemistry Department, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
4
|
Otte KS, Niklas JE, Studvick CM, Boggiano AC, Bacsa J, Popov IA, La Pierre HS. Divergent Stabilities of Tetravalent Cerium, Uranium, and Neptunium Imidophosphorane Complexes. Angew Chem Int Ed Engl 2023; 62:e202306580. [PMID: 37327070 DOI: 10.1002/anie.202306580] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/18/2023]
Abstract
The study of the redox chemistry of mid-actinides (U-Pu) has historically relied on cerium as a model, due to the accessibility of trivalent and tetravalent oxidation states for these ions. Recently, dramatic shifts of lanthanide 4+/3+ non-aqueous redox couples have been established within a homoleptic imidophosphorane ligand framework. Herein we extend the chemistry of the imidophosphorane ligand (NPC=[N=Pt Bu(pyrr)2 ]- ; pyrr=pyrrolidinyl) to tetrahomoleptic NPC complexes of neptunium and cerium (1-M, 2-M, M=Np, Ce) and present comparative structural, electrochemical, and theoretical studies of these complexes. Large cathodic shifts in the M4+/3+ (M=Ce, U, Np) couples underpin the stabilization of higher metal oxidation states owing to the strongly donating nature of the NPC ligands, providing access to the U5+/4+ , U6+/5+ , and to an unprecedented, well-behaved Np5+/4+ redox couple. The differences in the chemical redox properties of the U vs. Ce and Np complexes are rationalized based on their redox potentials, degree of structural rearrangement upon reduction/oxidation, relative molecular orbital energies, and orbital composition analyses employing density functional theory.
Collapse
Affiliation(s)
- Kaitlyn S Otte
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Julie E Niklas
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Chad M Studvick
- Department of Chemistry, The University of Akron, Akron, OH, 44325-3601, USA
| | - Andrew C Boggiano
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - John Bacsa
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| | - Ivan A Popov
- Department of Chemistry, The University of Akron, Akron, OH, 44325-3601, USA
| | - Henry S La Pierre
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
- Nuclear and Radiological Engineering Program, Georgia Institute of Technology, Atlanta, GA, 30332-0400, USA
| |
Collapse
|
5
|
Deng C, Liang J, Sun R, Wang Y, Fu PX, Wang BW, Gao S, Huang W. Accessing five oxidation states of uranium in a retained ligand framework. Nat Commun 2023; 14:4657. [PMID: 37537160 PMCID: PMC10400547 DOI: 10.1038/s41467-023-40403-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023] Open
Abstract
Understanding and exploiting the redox properties of uranium is of great importance because uranium has a wide range of possible oxidation states and holds great potential for small molecule activation and catalysis. However, it remains challenging to stabilise both low and high-valent uranium ions in a preserved ligand environment. Herein we report the synthesis and characterisation of a series of uranium(II-VI) complexes supported by a tripodal tris(amido)arene ligand. In addition, one- or two-electron redox transformations could be achieved with these compounds. Moreover, combined experimental and theoretical studies unveiled that the ambiphilic uranium-arene interactions are the key to balance the stabilisation of low and high-valent uranium, with the anchoring arene acting as a δ acceptor or a π donor. Our results reinforce the design strategy to incorporate metal-arene interactions in stabilising multiple oxidation states, and open up new avenues to explore the redox chemistry of uranium.
Collapse
Affiliation(s)
- Chong Deng
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiefeng Liang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Rong Sun
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Yi Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Peng-Xiang Fu
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Bing-Wu Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Beijing Key Laboratory for Magnetoelectric Materials and Devices, Beijing, 100871, P. R. China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Wenliang Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China.
| |
Collapse
|
6
|
Riedhammer J, Halter DP, Meyer K. Nonaqueous Electrochemistry of Uranium Complexes: A Guide to Structure-Reactivity Tuning. Chem Rev 2023. [PMID: 37134149 DOI: 10.1021/acs.chemrev.2c00903] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Uranium complexes can be stabilized in a wide range of oxidation states, ranging from UII to UVI and a very recent example of a UI complex. This review provides a comprehensive summary of electrochemistry data reported on uranium complexes in nonaqueous electrolyte, to serve as a clear point of reference for newly synthesized compounds, and to evaluate how different ligand environments influence experimentally observed electrochemical redox potentials. Data for over 200 uranium compounds are reported, together with a detailed discussion of trends observed across larger series of complexes in response to ligand field variations. In analogy to the traditional Lever parameter, we utilized the data to derive a new uranium-specific set of ligand field parameters UEL(L) that more accurately represent metal-ligand bonding situations than previously existing transition metal derived parameters. Exemplarily, we demonstrate UEL(L) parameters to be useful for the prediction of structure-reactivity correlations in order to activate specific substrate targets.
Collapse
Affiliation(s)
- Judith Riedhammer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| | - Dominik P Halter
- Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Technical University of Munich (TUM), TUM School of Natural Sciences, Lichtenbergstrasse 4, 85748 Garching, Germany
| | - Karsten Meyer
- Department of Chemistry and Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Egerlandstrasse 1, 91058 Erlangen, Germany
| |
Collapse
|