1
|
Wang G, Tan X, Yan BX, Zhang ZW, Luo G, Ye ZS. Palladium-Catalyzed Asymmetric Larock Isoquinoline Synthesis to Access Axially Chiral 3,4-Disubstituted Isoquinolines. J Am Chem Soc 2024; 146:27809-27818. [PMID: 39324424 DOI: 10.1021/jacs.4c10019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Larock isoquinoline synthesis is one of the most efficient and straightforward approaches to the construction of 3,4-disubstituted isoquinolines. However, there have been no asymmetric versions for the synthesis of axially chiral isoquinolines since their initial report in 2001. Herein, we documented the first example of an asymmetric Larock isoquinoline synthesis by employing Pd(OAc)2/Walphos SL-W002-1 as the catalyst, affording the axially chiral 3,4-disubstituted isoquinolines with up to 97.5:2.5 er and 98% yield. Density Functional Theory (DFT) calculations clearly clarified the catalytic mechanism and the origin of the experimentally observed enantioselectivity.
Collapse
Affiliation(s)
- Gang Wang
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, People's Republic of China
| | - Xinyu Tan
- Institutes of Physical Science and Information Technology, No.111 Jiulong Road, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Bing-Xia Yan
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, People's Republic of China
| | - Zhe-Wen Zhang
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, People's Republic of China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, No.111 Jiulong Road, Anhui University, Hefei, Anhui 230601, People's Republic of China
| | - Zhi-Shi Ye
- School of Chemistry, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, People's Republic of China
| |
Collapse
|
2
|
Fan R, Wen H, Chen Z, Xia Y, Fang W. A General Protocol toward Synthesis of 3-Methylindoles Using Acenaphthoimidazolyidene-Ligated Oxazoline Palladacycle. Org Lett 2024; 26:22-28. [PMID: 38127726 DOI: 10.1021/acs.orglett.3c03438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An efficient catalytic strategy toward the synthesis of N-substituted 3-methylindoles from inactive o-dihaloarenes and N-allylamines was developed by using a 1,3-bis(2,6-diisopropylphenyl)acenaphthoimidazol-2-ylidene (AnIPr)-ligated oxazoline palladacycle. It enabled a very broad substrate scope tolerating different functional groups, electronic properties, and steric bulkiness and afforded desired products in good to excellent yields. Importantly, it showed great potential to synthesize several bioactive compounds and key intermediates of natural products in high yields.
Collapse
Affiliation(s)
- Ruoqian Fan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Haili Wen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhen Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Weiwei Fang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| |
Collapse
|
3
|
Meng J, He H, Liu Q, Xu H, Huang H, Ni SF, Li Z. Enantioselective Palladium(II)-Catalyzed Desymmetrizative Coupling of 7-Azabenzonorbornadienes with Alkynylanilines. Angew Chem Int Ed Engl 2024; 63:e202315092. [PMID: 37943545 DOI: 10.1002/anie.202315092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/10/2023]
Abstract
A PdII -catalyzed, domino enantioselective desymmetrizative coupling of 7-azabenzonorbornadienes with alkynylanilines is disclosed herein. This operationally simple transformation generates three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereo-selectivity. The resulting functionalized indole-dihydronaphthalene-amine conjugates served as an appealing platform to streamline the diversity-oriented synthesis (DOS) of other valuable enantioenriched compounds. DFT calculations revealed that the two stabilizing non-covalent interactions contributed to the observed enantioselectivity.
Collapse
Affiliation(s)
- Junjie Meng
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hui He
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Qianru Liu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
| | - Huicai Huang
- Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510641, Guangdong, China
| | - Shao-Fei Ni
- Department of Chemistry, Shantou University, Shantou, 515063, Guangdong, China
| | - Zhaodong Li
- National Key Laboratory of Green Pesticide, College of Materials and Energy, South China Agricultural University, Guangzhou, 510641, Guangdong, China
- National Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China
| |
Collapse
|
4
|
Li JC, Yan BX, Wang G, Ye ZS. Rhodium-Catalyzed Selective Nucleophilic Cyclization/Cross-Coupling of Two ortho-Alkynylanilines Bearing Differential N-Substituents. Org Lett 2023; 25:5890-5895. [PMID: 37530173 DOI: 10.1021/acs.orglett.3c02180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Herein, we reported an effective selective nucleophilic cyclization/cross-coupling cascade reaction of N-tosyl ortho-alkynylanilines and N-acyl ortho-alkynylanilines using Rh(COD)2BF4/tBuXantPhos as a catalyst. The present protocol features excellent chemo- and regioselectivity, high atom-economy, and a broad range of substrates. The mechanism studies indicated that the key to the success of this reaction is the powerful capacity of the rhodium catalyst to recognize the N-substituent group in the selective nucleophilic cyclization and selective alkyne insertion.
Collapse
Affiliation(s)
- Jin-Chen Li
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Bing-Xia Yan
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gang Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhi-Shi Ye
- School of Chemistry, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
5
|
Hu C, Mena J, Alabugin IV. Design principles of the use of alkynes in radical cascades. Nat Rev Chem 2023:10.1038/s41570-023-00479-w. [PMID: 37117812 DOI: 10.1038/s41570-023-00479-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/30/2023]
Abstract
One of the simplest organic functional groups, the alkyne, offers a broad canvas for the design of cascade transformations in which up to three new bonds can be added to each of the two sterically unencumbered, energy-rich carbon atoms. However, kinetic protection provided by strong π-orbital overlap makes the design of new alkyne transformations a stereoelectronic puzzle, especially on multifunctional substrates. This Review describes the electronic properties contributing to the unique utility of alkynes in radical cascades. We describe how to control the selectivity of alkyne activation by various methods, from dynamic covalent chemistry with kinetic self-sorting to disappearing directing groups. Additionally, we demonstrate how the selection of reactive intermediates directly influences the propagation and termination of the cascade. Diverging from a common departure point, a carefully planned reaction route can allow access to a variety of products.
Collapse
|
6
|
Dutta S, Sahoo AK. Three Component syn-1,2-Arylmethylation of Internal Alkynes. Angew Chem Int Ed Engl 2023; 62:e202300610. [PMID: 36701082 DOI: 10.1002/anie.202300610] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/26/2023] [Accepted: 01/26/2023] [Indexed: 01/27/2023]
Abstract
A Pd-catalyzed three-component syn-1,2-arylmethylation of internal alkynes (ynamides/yne-acetates/alkynes) is described. The readily available and bench stable coupling partners iodo-arenes, and methyl boronic acid are successfully used in this coupling strategy to access the methyl-containing tetra-substituted olefins; the scope is broad showing excellent functional-group tolerance. Notably, the transformation is regio- as well as stereoselective. The biologically relevant motifs (BRM) bearing iodo-arenes and ynamides are also used for the late-stage syn-1,2-arylmethylation of alkynes. Aryl-alkylation, aryl-trideuteriomethylation, alkynyl-methylation, and alkenyl-methylation of ynamides are also presented. The Me-substituted alkenes are further transformed into synthetically important β-amino-indenones and α-fluoro-α'-methyl ketones.
Collapse
Affiliation(s)
- Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad, 500046, India
| |
Collapse
|
7
|
Li SW, Wang G, Ye ZS. Difluorocarbene Enabled Ester Insertion/1,4-Acyl Rearrangement of 2-Acetoxylpyridines: Modular Access to gem-Difluoromethylenated 2-Pyridones. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|