1
|
Zhang K, Hao M, Jin T, Shi Y, Tian G, Li C, Ma H, Zhang N, Li Q, Chen P. Synthesis of π-Conjugated Chiral Aza/Boracyclophanes with a meta and para Substitution. Chemistry 2024; 30:e202302950. [PMID: 37950682 DOI: 10.1002/chem.202302950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
We herein describe the synthesis of a new class of axially chiral aza/boracyclophanes (BDN1, BXN1, BDB1 and BXB1) using binaphthyls as chiral building blocks and the main-group (B/N) chemistry with tunable electronic effects. All macrocycles substituted with triarylamine donors or triarylborane acceptors are strongly luminescent. These macrocycles showed two distinct meta and para π-conjugation pathways, leading to the formation of quasi figure-of-eight and square-shaped conformations. Interestingly, comparison of such structural models revealed that the former type of macrocycles BXN1 and BXB1 gave higher racemization barriers relative to the other ones. The results reported here may provide a new approach to engineer the optical stability of π-conjugated chiral macrocycles by controlling π-substitution patterns. The ring constraints induced by macrocyclization were also demonstrated to contribute to the configurational persistence as compared with the open-chain analogues p-BTT and m-BTT.
Collapse
Affiliation(s)
- Kai Zhang
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Mengyao Hao
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
- Program in General Education, Capital Normal University, Beijing, 102488, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego La Jolla, 92093, USA
| | - Yafei Shi
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Guoqing Tian
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Chenglong Li
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Hongwei Ma
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing, 102488, China
| | - Quansong Li
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| | - Pangkuan Chen
- Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology of China, Beijing, 102488, China
| |
Collapse
|
2
|
Ma X, Zhang X, Zhang B, Yang D, Sun H, Tang Y, Shi L. Dual-responsive fluorescence probe for measuring HSO 3- and viscosity and its application in living cells and real foods. Food Chem 2024; 430:136930. [PMID: 37527580 DOI: 10.1016/j.foodchem.2023.136930] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
Microenvironmental indicators in organisms drive the operation of different physiological functions. In contrast, disruption of microenvironmental homeostasis is often closely associated with various pathological processes. A novel dual-response fluorescent probe based on hemicyanine dye (HT-Bzh) was designed and synthesized for the detection of HSO3- and viscosity changes. The probe not only provides high sensitivity (limit of detection = 0.2526 μM) for the detection of HSO3- using the Michael addition reaction, but also allows the observation of fluorescence emission at 528 nm and thus the monitoring of viscosity changes through hindering of the twisted intramolecular charge transfer (TICT) mechanism. Additionally, dual-response probe has been successfully used to image living cells and detect real food samples. As a new designed tool, HT-Bzh shows excellent anti-interference capability and biocompatibility, which makes it have application potential in other biological systems and in-vivo imaging.
Collapse
Affiliation(s)
- Xiaoying Ma
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| | - Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Dawei Yang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongxia Sun
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yalin Tang
- National Laboratory for Molecular Sciences, Center for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China.
| |
Collapse
|
3
|
Li P, Jia Y, Chen P. Design and Synthesis of New Type of Macrocyclic Architectures Used for Optoelectronic Materials and Supramolecular Chemistry. Chemistry 2023; 29:e202300300. [PMID: 37439485 DOI: 10.1002/chem.202300300] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/08/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
Supramolecular chemistry has received much attention for decades. Macrocyclic architectures as representative receptors play a vital role in supramolecular chemistry and are applied in many fields such as supramolecular assembly and host-guest recognition. However, the classical macrocycles generally lack functional groups in the scaffolds, which limit their further applications, especially in optoelectronic materials. Therefore, developing a new design principle is not only essential to better understand macrocyclic chemistry and the supramolecular behaviors, but also further expand their applications in many research fields. In recent years, the doping compounds with main-group heteroatoms (B, N, S, O, P) into the carbon-based π-conjugated macrocycles offered a new strategy to build macrocyclic architectures with unique optoelectronic properties. In particular, the energy gaps and redox behavior can be effectively tuned by incorporating heteroatoms into the macrocyclic scaffolds. In this Minireview, we briefly summarize the design and synthesis of new macrocycles, and further discuss the related applications in optoelectronic materials and supramolecular chemistry.
Collapse
Affiliation(s)
- Pengfei Li
- School of Chemistry and Material Engineering, Henan University of Urban Construction, Pingdingshan, 467036, Henan Province, P. R. China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science of the Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
4
|
Schneider JS, Krummenacher I, Braunschweig H, Helten H. Linear and macrocyclic oligo( p-phenylene iminoboranes) with ferrocenyl side groups - observation of selective, non-templated macrocyclization. Chem Commun (Camb) 2023. [PMID: 37326423 DOI: 10.1039/d3cc01825c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of linear oligo(p-phenylene iminoboranes), which are BN-modified congeners of oligo(p-phenylene vinylenes), featuring pendent ferrocene groups have been prepared. Stoichiometric reaction of a bis-silylamine with a bisborane led to selective formation of an unprecedented macrocycle, without the use of a template.
Collapse
Affiliation(s)
- Johannes S Schneider
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| | - Holger Helten
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg, Am Hubland, Würzburg 97074, Germany.
| |
Collapse
|
5
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
6
|
Ma X, Shi L, Zhang B, Zhao S, Yuan X, Zhang X. Cy3 Cyanine Dye with Strong Fluorescence Enhancement for AGRO100 and Its Derivative. J Phys Chem B 2023; 127:1811-1818. [PMID: 36802619 DOI: 10.1021/acs.jpcb.2c08784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Nucleic acids, as important substances for biological inheritance, have attracted extensive attention in the biomedical field. More and more cyanine dyes are emerging as one of the probe tools for nucleic acid detection due to their excellent photophysical properties. Here, we discovered that the insertion of the AGRO100 sequence can specifically disrupt the twisted intramolecular charge transfer (TICT) mechanism of the trimethine cyanine dye (TCy3), resulting in a clear "turn-on" response. Moreover, the fluorescence enhancement of TCy3 combined with the T-rich AGRO100 derivative is more obvious. One explanation for the interaction between dT (deoxythymidine) and positively charged TCy3 may be that its outer layer carries the most negative charge. This study provides a theoretical basis for the use of TCy3 as a DNA probe, which has promising applications in the DNA detection of biological samples. It also provides the basis for the following construction of probes with specific ability for recognition.
Collapse
Affiliation(s)
- Xiaoying Ma
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Lei Shi
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Buyue Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Shuhua Zhao
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xinyu Yuan
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| | - Xiufeng Zhang
- Hebei Key Laboratory of Medical-Industrial Integration Precision Medicine, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China
| |
Collapse
|
7
|
Meng G, Dai H, Zhou J, Huang T, Zeng X, Wang Q, Wang X, Zhang Y, Fan T, Yang D, Ma D, Zhang D, Duan L. Wide-range color-tunable polycyclo-heteraborin multi-resonance emitters containing B-N covalent bonds. Chem Sci 2023; 14:979-986. [PMID: 36755724 PMCID: PMC9890539 DOI: 10.1039/d2sc06343c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/18/2022] [Indexed: 12/23/2022] Open
Abstract
Boron- and nitrogen (BN)-fused polycyclic aromatic frameworks with amine-directed formation of B-N covalent bonds have the potential to form a new family of facile-synthesis multi-resonance luminophores, which, however, still face imperative challenges in diversifying the molecular design to narrow the emission bandwidth and tune the emission colors. Here, we demonstrate a strategic implementation of B-N bond containing polycyclo-heteraborin multi-resonance emitters with wide-range colors from deep-blue to yellow-green (442-552 nm), small full-width at half-maxima of only 19-28 nm and high photoluminescence efficiencies, by stepwise modifying the basic para B-π-B structures with heteroatoms. The corresponding electroluminescent devices show superior maximum external quantum efficiencies with an exceptional low-efficiency roll-off, retaining 21.0%, 23.6% and 22.1% for the sky-blue, green and yellow-green devices at a high luminance of 5000 cd m-2, respectively.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Jianping Zhou
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Qi Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Tianjiao Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyGuangzhou510640P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices, South China University of TechnologyGuangzhou510640P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing P. R. China .,Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|