1
|
Steffenfauseweh H, Vishnevskiy YV, Neumann B, Stammler HG, de Bruin B, Ghadwal RS. N-Heterocyclic Carbene Analogues of Wittig Hydrocarbon. Chemistry 2024; 30:e202400879. [PMID: 38437163 DOI: 10.1002/chem.202400879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
N-Heterocyclic carbene (NHC) analogues of Wittig hydrocarbon, [(NHC)(Stil)(NHC)] (3a-c) (NHC = SIPr (1a) = C[N(Dipp)CH2]2, Dipp = 2,6-iPr2C6H3; IPr (1b) = C[N(Dipp)CH]2; Me-IPr (1c) = C[N(Dipp)CMe]2 and Stil = C6H4CHCHC6H4) have been reported as crystalline solids. 3a-c are prepared by two-electron reductions of the corresponding bis-1,3-imidazoli(ni)um bromides [(NHC)(Stil)NHC)](Br)2 (2a-c) with KC8 in >94 % yields. 2a-c are accessible by the nickel catalyzed direct C-C coupling of NHCs (1a-c) with (E)-4,4'-dibromostilbene. One-electron oxidation of 3a,b yields the corresponding radical cations [(NHC)(Stil)NHC)]B(C6F5)4 4a,b. All compounds have been characterized by UV-Vis/NMR/EPR spectroscopy as well as 2a, 3a, and 3b by single crystal X-ray diffraction. The electronic structures of representative systems have been analyzed by quantum chemical calculations.
Collapse
Affiliation(s)
- Henric Steffenfauseweh
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Yury V Vishnevskiy
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Beate Neumann
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Hans-Georg Stammler
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| | - Bas de Bruin
- University of Amsterdam (UvA), Faculty of Science, Van 't Hoff Institute for Molecular Sciences (HIMS), Homogeneous and Supramolecular Catalysis Group, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Rajendra S Ghadwal
- Molecular Inorganic Chemistry and Catalysis, Inorganic and Structural Chemistry, Center for Molecular Materials, Faculty of Chemistry, Universität Bielefeld, Universitätsstrasse 25, D-33615, Bielefeld, Germany
| |
Collapse
|
2
|
Nayak MK, Elvers BJ, Mehta S, Krummenacher I, Mondal A, Braunschweig H, Schulzke C, Ravat P, Jana A. Bis-[cyclic(alkyl)(amino)carbene]-derived diradicals. Chem Commun (Camb) 2024; 60:1739-1742. [PMID: 38240479 DOI: 10.1039/d3cc05779h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Crystalline polymeric structures of trans-1,4-cyclohexylene bridged N-tethered bis-CAACs in the form of their LiOTf adducts were synthesized and isolated. These were further used as building blocks for the synthesis of crystalline (amino)(carboxy)-based diradicals. The triplet diradical character of these compounds was unambiguously confirmed by the presence of a half-field signal in their EPR spectra. Theoretical calculations show that the singlet state is marginally more stable than the triplet state.
Collapse
Affiliation(s)
- Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore, 560012, India.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| |
Collapse
|
3
|
Saha P, Chrysochos N, Elvers BJ, Pätsch S, Uddin SI, Krummenacher I, Nandeshwar M, Mishra A, Raman KV, Rajaraman G, Prabusankar G, Braunschweig H, Ravat P, Schulzke C, Jana A. Bis-Olefin Based Crystalline Schlenk Hydrocarbon Diradicals with a Triplet Ground State. Angew Chem Int Ed Engl 2023; 62:e202311868. [PMID: 37646230 DOI: 10.1002/anie.202311868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/01/2023]
Abstract
A modular approach for the synthesis of isolable crystalline Schlenk hydrocarbon diradicals from m-phenylene bridged electron-rich bis-triazaalkenes as synthons is reported. EPR spectroscopy confirms their diradical nature and triplet electronic structure by revealing a half-field signal. A computational analysis confirms the triplet state to be the ground state. As a proof-of-principle for the modular methodology, the 4,6-dimethyl-m-phenylene was further utilized as a coupling unit between two alkene motifs. The steric conjunction of the 4,6-dimethyl groups substantially twists the substituents at the nonbonding electron bearing centers relative to the central coupling m-phenylene motif. As a result, the spin delocalization is decreased and the exchange coupling between the two unpaired spins, hence, significantly reduced. Notably, 108 years after Schlenk's m-phenylene-bis(diphenylmethyl) synthesis as a diradical, for the first time we were able to isolate its derivative with the same spacer, i.e. m-phenylene, between two radical centers in a crystalline form.
Collapse
Affiliation(s)
- Priyanka Saha
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Sebastian Pätsch
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Sk Imraj Uddin
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, India
| | - Anshika Mishra
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Karthik V Raman
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, 502284, India
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Prince Ravat
- Institute of Organic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, 17489, Greifswald, Germany
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad, 500046, India
| |
Collapse
|
4
|
Chrysochos N, Pätsch S, Elvers BJ, Krummenacher I, Nandeshwar M, Prabusankar G, Braunschweig H, Schulzke C, Ravat P, Jana A. Introducing an orthogonally polarized electron-rich alkene: synthesis of a zwitterionic boron-containing π-conjugated system. Chem Commun (Camb) 2023; 59:12350-12353. [PMID: 37767978 DOI: 10.1039/d3cc03975g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
The synthesis of an alkene is reported which is concurrently twisted (twist angle = 86.6(8)°), push-pull (dipole moment = 7.48 D), and electron-rich (E1/2 = -1.45 V and -0.52 V vs. Fc/Fc+) in nature, comprising a unique trinity combination for the alkene class of compounds. Subsequently, this newly synthesized alkene-motif was used as a donor for the synthesis of a zwitterionic boron-containing π-conjugated compound (dipole moment = 12.17 D) through an intramolecular charge transfer process exploiting the π-conjugated donor-acceptor system.
Collapse
Affiliation(s)
- Nicolas Chrysochos
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Sebastian Pätsch
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Ivo Krummenacher
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Muneshwar Nandeshwar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, India.
| | - Ganesan Prabusankar
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi-502284, India.
| | - Holger Braunschweig
- Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17489, Greifswald, Germany.
| | - Prince Ravat
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| |
Collapse
|
5
|
Abstract
Heteroatom-centered diradical(oid)s have been in the focus of molecular main group chemistry for nearly 30 years. During this time, the diradical concept has evolved and the focus has shifted to the rational design of diradical(oid)s for specific applications. This review article begins with some important theoretical considerations of the diradical and tetraradical concept. Based on these theoretical considerations, the design of diradical(oid)s in terms of ligand choice, steric, symmetry, electronic situation, element choice, and reactivity is highlighted with examples. In particular, heteroatom-centered diradical reactions are discussed and compared with closed-shell reactions such as pericyclic additions. The comparison between closed-shell reactivity, which proceeds in a concerted manner, and open-shell reactivity, which proceeds in a stepwise fashion, along with considerations of diradical(oid) design, provides a rational understanding of this interesting and unusual class of compounds. The application of diradical(oid)s, for example in small molecule activation or as molecular switches, is also highlighted. The final part of this review begins with application-related details of the spectroscopy of diradical(oid)s, followed by an update of the heteroatom-centered diradical(oid)s and tetraradical(oid)s published in the last 10 years since 2013.
Collapse
Affiliation(s)
- Alexander Hinz
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Jonas Bresien
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| | - Frank Breher
- Institut für Anorganische Chemie (AOC), Karlsruher Institut für Technologie (KIT), Engesserstrasse 15, 76131 Karlsruhe, Germany
| | - Axel Schulz
- Institut für Chemie, Universität Rostock, Albert-Einstein-Strasse 3a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Nayak MK, Elvers BJ, Mandal D, Das A, Ramakrishnan R, Mote KR, Schulzke C, Yildiz CB, Jana A. Reduction of 2- H-substituted pyrrolinium cations: the carbon-carbon single bond in air stable 2,2'-bipyrrolidines as a two-electron-source. Chem Commun (Camb) 2023; 59:6698-6701. [PMID: 37183853 DOI: 10.1039/d3cc00891f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Reduction of 2-H-substituted pyrrolinium cations via initially formed secondary radicals results in either dimerisation or H-abstracted products, while the outcome depends on the N-substituents. The resultant central carbon-carbon single bond in the dimerised 2,2'-bipyrrolidine derivatives can be oxidised chemically and electrochemically. The notably air and moisture-stable dimers were subsequently utilised as a source of two electrons in various chemical transformations.
Collapse
Affiliation(s)
- Mithilesh Kumar Nayak
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Benedict J Elvers
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17489, Germany.
| | - Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Ayan Das
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Raghunathan Ramakrishnan
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Kaustubh R Mote
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, Greifswald D-17489, Germany.
| | - Cem Burak Yildiz
- Department of Aromatic and Medicinal Plants, Aksaray University, Aksaray-68100, Türkiye.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500046, Telangana, India.
| |
Collapse
|