1
|
Zhou S, Qiu T, Wang H, Tang B, Su Y, Nan T, Dong J, Wang Z, Liu D, Zhu G. Flexible porous organic polymers constructed using C(sp 3)-C(sp 3) coupling reactions and their high methane-storage capacity. Chem Sci 2024; 15:10830-10837. [PMID: 39027276 PMCID: PMC11253196 DOI: 10.1039/d4sc01289e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/29/2024] [Indexed: 07/20/2024] Open
Abstract
Carbon-carbon coupling is a basic design principle for the synthesis of porous organic polymers, which are widely used in gas adsorption/separation, photocatalysis, energy storage, etc. However, the C(sp3)-C(sp3) coupling reaction to construct porous organic polymers remains an important yet elusive objective due to its low reactivity and unknown side reactions. Herein, we report that nickel bis(1,5-cyclooctadiene) (Ni(COD)2), which was a famous catalyst for C(sp2)-C(sp2) coupling reactions, enables highly efficient C(sp3)-C(sp3) homo-coupling reactions to construct porous linear crystalline polymers and flexible three-dimensional porous aromatic frameworks (PAFs) under mild reaction conditions. The resulting linear polymers generated with dibromomethyl arenes have good crystallinity and high melting points (T m = 286 °C) due to controllability of reaction sites. Furthermore, the PAFs (PAF-64, PAF-65 and PAF-66) stemmed from tri-/tetra-bromomethyl arenes show high surface area (S BET = 390 m2 g-1) and high methane-storage capacity (up to 313 cm3 cm-3) because of their flexible frameworks. This work sheds new light on the construction of novel porous polymers through C(sp3)-C(sp3) coupling reactions and the development of methane-storage materials.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Tianyu Qiu
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - He Wang
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Boyan Tang
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Yang Su
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Tianhao Nan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| | - Junchao Dong
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Zihao Wang
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Dongtao Liu
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| | - Guangshan Zhu
- Department of Chemistry, Northeast Normal University Changchun Jilin 130024 P. R. China
| |
Collapse
|
2
|
Du W, Liu L, Yin L, Li B, Ma Y, Guo X, Zang HY, Zhang N, Zhu G. Ultrathin Free-Standing Porous Aromatic Framework Membranes for Efficient Anion Transport. Angew Chem Int Ed Engl 2024; 63:e202402943. [PMID: 38529715 DOI: 10.1002/anie.202402943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/10/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024]
Abstract
Porous aromatic frameworks (PAFs) show promising potential in anionic conduction due to their high stability and customizable functionality. However, the insolubility of most PAFs presents a significant challenge in their processing into membranes and subsequent applications. In this study, continuous PAF membranes with adjustable thickness were successfully created using liquid-solid interfacial polymerization. The rigid backbone and the stable C-C coupling endow PAF membrane with superior chemical and dimensional stabilities over most conventional polymer membranes. Different quaternary ammonium functionalities were anchored to the backbone through flexible alkyl chains with tunable length. The optimal PAF membrane exhibited an OH- conductivity of 356.6 mS ⋅ cm-1 at 80 °C and 98 % relative humidity. Additionally, the PAF membrane exhibited outstanding alkaline stability, retaining 95 % of its OH- conductivity after 1000 hours in 1 M NaOH. To the best of our knowledge, this is the first application of PAF materials in anion exchange membranes, achieving the highest OH- conductivity and exceptional chemical/dimensional stability. This work provides the possibility for the potential of PAF materials in anionic conductive membranes.
Collapse
Affiliation(s)
- Wenguang Du
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Lin Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Liying Yin
- School of Chemistry and Life Science, Changchun University of Technology, Changchun, 130012, P. R. China
| | - Bo Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Yu Ma
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoyu Guo
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Hong-Ying Zang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ning Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
3
|
Cao XM, Zhang AY, Cui WR, Liu LY, Zhang YX, Lin H, Zhang Y. Azo-Linked Porous Polycalix[ n]arenes for the Efficient Removal of Organic Micropollutants from Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:957-965. [PMID: 38151466 DOI: 10.1021/acsami.3c18069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Developing novel porous adsorbents for efficient wastewater treatment is significant to the environment protection. Herein, three porous polycalix[n]arenes (n = 4, 6, and 8) which had varying cavity sizes of the macrocycle (Azo-CX4P, Azo-CX6P, and Azo-CX8P) were prepared under mild conditions and tested for their potential application in water purification. Azo-CX8P with a larger cavity size of the macrocycle outperformed Azo-CX4P and Azo-CX6P in screening studies involving a range of organic micropollutants. It was proved that Azo-CX8P was especially efficient in the removal of cationic dyes because of its high negative surface charge. In terms of the adsorption of Rhodamine B with Azo-CX8P, the pseudo-second-order rate constant reaches 5.025 g·mg-1·min-1 with the maximum adsorption capacity being 1345 mg·g-1. These values are significantly higher compared with those recorded for most adsorbents. In addition, the easily prepared Azo-CX8P can be reused at least six times without a loss of the adsorption efficiency, demonstrating its potential use in water purification.
Collapse
Affiliation(s)
- Xiao-Mei Cao
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Ai-Ying Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Wei-Rong Cui
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Lu-Yao Liu
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yu-Xuan Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Hui Lin
- Jiangxi Provincial Key Laboratory of Low-Carbon Solid Waste Recycling, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou 341000, China
| | - Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
4
|
Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131835. [PMID: 37348374 DOI: 10.1016/j.jhazmat.2023.131835] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.
Collapse
Affiliation(s)
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
5
|
Highly Selective Separation of C2H2/CO2 and C2H2/C2H4 in an N-Rich Cage-Based Microporous Metal-Organic Framework. ADSORPT SCI TECHNOL 2023. [DOI: 10.1155/2023/4740672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
The separation of acetylene (C2H2) from carbon dioxide (CO2) and the purification of ethylene (C2H4) from C2H2 are quite essential processes for the chemical industry. However, these processes are challenging due to their similar physical properties, including molecule sizes and boiling points. Herein, we report an N-rich cage-based microporous metal-organic framework (MOF), [Cd5(Tz)9](NO3) (termed as Cd-TZ, TZ stands for tetrazole), and its highly efficient separation of C2H2/CO2 and C2H2/C2H4. Single-component gas adsorption isotherms reveal that Cd-TZ exhibits high C2H2 adsorption capacity (3.10 mmol g-1 at 298 K and 1 bar). The N-rich cages in Cd-TZ can trap C2H2 with a higher isosteric heat of adsorption (40.8 kJ mol-1) than CO2 and C2H4 owing to the robust host-guest interactions between the noncoordinated N atoms and C2H2, which has been verified by molecular modeling studies. Cd-TZ shows a high IAST selectivity for C2H2/CO2 (8.3) and C2H2/C2H4 (13.3). The breakthrough simulations confirm the potential for separating C2H2/CO2 and the purification of C2H4 from C2H2.
Collapse
|