1
|
Wang M, Dai H, Yang Q. Catalytic applications of organic-inorganic hybrid porous materials. Chem Commun (Camb) 2024. [PMID: 39444317 DOI: 10.1039/d4cc04284k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Organic-inorganic hybrid porous materials (OIHMs) inherit the unique properties from both organic and inorganic components, and the flexibility in the incorporation of functional groups renders the OIHMs an ideal platform for the construction of catalytic materials with multiple active sites. The preparation of OIHMs with precise locations of organic-inorganic components and tunable structures is one of the important topics for the catalytic application of OIHMs, but it is still very challenging. In this feature article, we describe our work related to the preparation of OIHMs via confining active sites in the nanostructure and a layer-by-layer assembly method and their applications in acid-base catalysis, catalytic hydrogenation and photocatalysis with a focus on the elucidation of the synergistic effects of different active sites and the unique properties of OIHMs in catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
2
|
Chen Z, Hao S, Li H, Dong X, Chen X, Yuan J, Sidorenko A, Huang J, Gu Y. Dipolar Microenvironment Engineering Enabled by Electron Beam Irradiation for Boosting Catalytic Performance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401562. [PMID: 38860673 PMCID: PMC11321705 DOI: 10.1002/advs.202401562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/07/2024] [Indexed: 06/12/2024]
Abstract
Creating a diverse dipolar microenvironment around the active site is of great significance for the targeted induction of intermediate behaviors to achieve complicated chemical transformations. Herein, an efficient and general strategy is reported to construct hypercross-linked polymers (HCPs) equipped with tunable dipolar microenvironments by knitting arene monomers together with dipolar functional groups into porous network skeletons. Benefiting from the electron beam irradiation modification technique, the catalytic sites are anchored in an efficient way in the vicinity of the microenvironment, which effectively facilitates the processing of the reactants delivered to the catalytic sites. By varying the composition of the microenvironment scaffold structure, the contact and interaction behavior with the reaction participants can be tuned, thereby affecting the catalytic activity and selectivity. As a result, the framework catalysts produced in this way exhibit excellent catalytic performance in the synthesis of glycinate esters and indole derivatives. This manipulation is reminiscent of enzymatic catalysis, which adjusts the internal polarity environment and controls the output of products by altering the scaffold structure.
Collapse
Affiliation(s)
- Zhiyan Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Shuai Hao
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Haozhe Li
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Xiaohan Dong
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| | - Xihao Chen
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Jushigang Yuan
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Alexander Sidorenko
- Institute of Chemistry of New Materials of National Academy of Sciences of BelarusMinsk220084Belarus
| | - Jiang Huang
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- State Key Laboratory of Advanced Electromagnetic Engineering and TechnologyHuazhong University of Science and TechnologyWuhan430074China
| | - Yanlong Gu
- Huazhong University of Science and Technology1037 Luoyu RoadHongshan DistrictWuhan430074China
- Key Laboratory of Material Chemistry for Energy Conversion and StorageMinistry of EducationHubei Key Laboratory of Material Chemistry and Service FailureHuazhong University of Science and TechnologyWuhan430074China
| |
Collapse
|
3
|
Li T, Yang J, Tan Y, Yue Y, Sun Z, Han M, Peng P, Chen Q. Promoting Catalytic Performance Involving Hydrogen Spillover by Ion Exchange of Pt@A Catalysts to Regulate Reactant Adsorption. Inorg Chem 2024; 63:5120-5131. [PMID: 38456407 DOI: 10.1021/acs.inorgchem.4c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Zeolite-encapsulated metal nanoparticle systems have exhibited interesting catalytic performances via the hydrogen spillover process, yet how to further utilize the function of zeolite supports to promote catalytic properties in such a process is still challenging and has rarely been investigated. Herein, to address this issue, the strategy to strengthen the adsorption energy of reactant onto the zeolite surface via a simple ion exchange method has been implemented. Ion-exchanged linde type A (LTA) zeolite-encapsulated platinum nanoclusters (Pt@NaA, Pt@HA, Pt@KA, and Pt@CaA) were prepared to study the influence of ion exchange on the catalytic performance in the model reaction of hydrogenation of acetophenone to 1-phenylethanol. The reaction results showed that the Pt@CaA catalyst exhibited the best catalytic activity in the series of encapsulated catalysts, and the selectivity of 1-phenylethanol approached 100%. As revealed by density functional theory (DFT) calculations and acetophenone temperature-programmed desorption (acetophenone-TPD) experiments, in comparison with introduced cations of Na+, H+, and K+, ion-exchanged Ca2+ on the zeolite maximumly enhanced the adsorption of carbonyl groups in acetophenone, playing a critical role in achieving the highest activity and excellent catalytic selectivity among the Pt@A catalysts.
Collapse
Affiliation(s)
- Tianhao Li
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Jing Yang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaozong Tan
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Yaning Yue
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Zongyu Sun
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Mengxi Han
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Pai Peng
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| | - Qiang Chen
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai Campus, Zhuhai 519082, China
| |
Collapse
|
4
|
Korobov A. A possibility to infer frustrations of supported catalytic clusters from macro-scale observations. Sci Rep 2024; 14:3801. [PMID: 38361133 PMCID: PMC10869823 DOI: 10.1038/s41598-024-54485-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/12/2024] [Indexed: 02/17/2024] Open
Abstract
Recent experimental and theoretical studies suggest that dynamic active centres of supported heterogeneous catalysts may, under certain conditions, be frustrated. Such out-of-equilibrium materials are expected to possess unique catalytic properties and also higher level of functionality. The latter is associated with the navigation through the free energy landscapes with energetically close local minima. The lack of common approaches to the study of out-of-equilibrium materials motivates the search for specific ones. This paper suggests a way to infer some valuable information from the interplay between the intensity of reagent supply and regularities of product formation.
Collapse
Affiliation(s)
- Alexander Korobov
- Materials Chemistry Department, V. N. Karazin Kharkiv National University, Kharkiv, 61022, Ukraine.
| |
Collapse
|
5
|
Wang M, Dai H, Yang Q. Enzyme-Compatible Core-Shell Nanoreactor for in Situ H 2 -Driven NAD(P)H Regeneration. Angew Chem Int Ed Engl 2023; 62:e202309929. [PMID: 37584440 DOI: 10.1002/anie.202309929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/17/2023]
Abstract
The regeneration of the reduced form cofactor NAD(P)H is essential for the extra-cellular application of bio-reduction, which necessitates not only the development of efficient artificial NAD(P)H regeneration catalytic system but also its well compatibility with the cascade enzymatic reduction system. In this work, we reported the preparation of a metal nanoparticle (NP) and metal complex integrated core-shell nanoreactor for H2 -driven NAD(P)H regeneration through the immobilization of a Rh complex on Ni/TiO2 surface via a bipyridine contained 3D porous organic polymer (POP). In comparison with the corresponding single component metal NPs and the immobilized Rh complex, the integrated catalyst presented simultaneously enhanced activity and selectivity in NAD(P)H regeneration thanks to the rapid spillover of activated H species from metal NPs to Rh complex. In addition, the size-sieving effect of POP precluded the direct interaction of enzyme and Rh complex confined in the pores, enabling the success coupling of core-shell nanoreactor and aldehyde ketone reductase (AKR) for chemoenzymatic reduction of acetophenone to (R)-1-phenylethan-1-ol. This work provides a strategy for the rational manipulation of multicomponent cooperation catalysis.
Collapse
Affiliation(s)
- Maodi Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huicong Dai
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| | - Qihua Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Key Laboratory for Reactive Chemistry on Solid Surfaces, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
6
|
Su S, Li X, Liu Z, Ding W, Cao Y, Yang Y, Su Q, Luo M. Microchemical environmental regulation of POMs@MIL-101(Cr) promote photocatalytic nitrogen to ammonia. J Colloid Interface Sci 2023; 646:547-554. [PMID: 37210902 DOI: 10.1016/j.jcis.2023.05.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/28/2023] [Accepted: 05/10/2023] [Indexed: 05/23/2023]
Abstract
The polyoxometalates (POMs) have been shown to be highly effective as reactive sites for photocatalytic nitrogen fixation reactions. However, the effect of POMs regulation on catalytic performance has not been reported yet. Herein, a series of composites (SiW9M3@MIL-101(Cr) (M = Fe, Co, V, Mo) and D-SiW9Mo3@MIL-101(Cr), D, Disordered) were obtained by regulating transition metal compositions and arrangement in the POMs. The ammonia production rate of SiW9Mo3@MIL-101(Cr) is much higher than that of other composites, reaching 185.67 μmol·h-1·g-1cat in N2 without sacrificial agents. The structural characterization of composites reveals that the increase of the electron cloud density of W atom in composites is the key to improve the photocatalytic performance. In this paper, the microchemical environment of POMs was regulated by transition metal doping method, thereby promoting the efficiency of photocatalytic ammonia synthesis for the composites, which provides new insights into the design of POM-based photocatalysts with high catalytic activity.
Collapse
Affiliation(s)
- Senda Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Xiaoman Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| | - Zhenyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Wenming Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yue Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Yang Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Qin Su
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China
| | - Min Luo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia 750021, China.
| |
Collapse
|
7
|
Ye R, Huang YY, Chen CC, Yao YG, Fan M, Zhou Z. Emerging catalysts for the ambient synthesis of ethylene glycol from CO 2 and its derivatives. Chem Commun (Camb) 2023; 59:2711-2725. [PMID: 36752126 DOI: 10.1039/d2cc06313a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Ethylene glycol (EG), a useful chemical raw material, has been widely applied in many aspects of modern society. The conventional preparation of ethylene glycol mainly uses the petroleum route at high temperatures and pressure. More and more approaches have been developed to synthesize EG from CO2 and its derivatives under mild conditions. In this review, the ambient synthesis of EG from thermocatalysis, photocatalysis, and electrocatalysis is highlighted. The coal-to-ethylene glycol technology, one of the typical thermal catalysis routes for EG preparation, is relatively mature. However, it still faces some problems to be solved in industrialization. The recent progress in the development of coal-to-ethylene glycol technology is introduced. The main focus is on how to realize the preparation of EG under mild conditions. The strategies include doping promoters, modification of supports, design of catalysts with special structures, etc. Furthermore, the emerging technological progress of photocatalytic and electrocatalytic ethylene glycol synthesis under ambient conditions is introduced. Compared with the thermal catalytic reaction, the reaction conditions are milder. However, there are still many problems in large-scale production. Finally, we propose future development issues and related prospects for the ambient synthesis of EG using different catalytic routes.
Collapse
Affiliation(s)
- Runping Ye
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, Institute of Applied Chemistry, School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, P. R. China.
| | - Yuan-Yuan Huang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Chong-Chong Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China. .,College of Food and Drug, Luoyang Normal University, Luoyang, 471934, P. R. China
| | - Yuan-Gen Yao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| | - Maohong Fan
- College of Engineering and Physical Sciences, School of Energy Resources, University of Wyoming, Laramie, Wyoming, 82071, USA. .,College of Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Zhangfeng Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
| |
Collapse
|