1
|
Yang M, Wang X, Peng M, Wang F, Hou S, Xing R, Chen A. Nanomaterials Enhanced Sonodynamic Therapy for Multiple Tumor Treatment. NANO-MICRO LETTERS 2025; 17:157. [PMID: 39992547 PMCID: PMC11850698 DOI: 10.1007/s40820-025-01666-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/08/2025] [Indexed: 02/25/2025]
Abstract
Sonodynamic therapy (SDT) as an emerging modality for malignant tumors mainly involves in sonosensitizers and low-intensity ultrasound (US), which can safely penetrate the tissue without significant attenuation. SDT not only has the advantages including high precision, non-invasiveness, and minimal side effects, but also overcomes the limitation of low penetration of light to deep tumors. The cytotoxic reactive oxygen species can be produced by the utilization of sonosensitizers combined with US and kill tumor cells. However, the underlying mechanism of SDT has not been elucidated, and its unsatisfactory efficiency retards its further clinical application. Herein, we shed light on the main mechanisms of SDT and the types of sonosensitizers, including organic sonosensitizers and inorganic sonosensitizers. Due to the development of nanotechnology, many novel nanoplatforms are utilized in this arisen field to solve the barriers of sonosensitizers and enable continuous innovation. This review also highlights the potential advantages of nanosonosensitizers and focus on the enhanced efficiency of SDT based on nanosonosensitizers with monotherapy or synergistic therapy for deep tumors that are difficult to reach by traditional treatment, especially orthotopic cancers.
Collapse
Affiliation(s)
- Mengyao Yang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xin Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Mengke Peng
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Fei Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Senlin Hou
- The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, People's Republic of China.
| | - Ruirui Xing
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
2
|
Wu X, Deng Y, Wang R, Kim H, Kim G, Xu Y, Hong KT, Lee JS, Hu JJ, Liang G, Yoon J. Rational Design of an Activatable Near-Infrared Fluorogenic Platform for In Vivo Orthotopic Tumor Imaging and Resection. Angew Chem Int Ed Engl 2025; 64:e202416877. [PMID: 39449191 DOI: 10.1002/anie.202416877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 10/26/2024]
Abstract
Rational and effective design of a universal near-infrared (NIR) light-absorbed platform employed to prepare diverse activatable NIR fluorogenic probes for in vivo imaging and the imaging-guided tumor resection remains less exploited but highly meaningful. Herein, mandelic acid with a core structure of 4-hydroxylbenzyl alcohol to link recognition unit, a fluorophore and a quencher was employed to prepare activatable probes. We exemplified ester as carboxylesterase (CE)-recognized unit, ferrocene as quencher and phenothiazinium as NIR fluorophore to afford fluorogenic probes termed NBS-Fe-CE and NBS-C-Fe-CE. These probes enabled the conversion toward CE with significant fluorescence increases and successfully discriminate CE activity in cells. NIR light enhances the tumor penetration and enable imaging-guided orthotopic tumor resection. This specific case demonstrated that this platform can be effectively used to construct diverse NIR probes for imaging analytes in biological systems.
Collapse
Affiliation(s)
- Xiaofeng Wu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Deng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Gyoungmi Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| | - Ying Xu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kyung Tae Hong
- Bio-Med Program, KIST-School UST, Hwarang-ro 14 gil 5, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jun-Seok Lee
- Department of Pharmacology, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul, 02841, Korea
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Gaolin Liang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03706, Republic of Korea
| |
Collapse
|
3
|
Ge X, Hu J, Qi X, Shi Y, Chen X, Xiang Y, Xu H, Li Y, Zhang Y, Shen J, Deng H. An Immunomodulatory Hydrogel Featuring Antibacterial and Reactive Oxygen Species Scavenging Properties for Treating Periodontitis in Diabetes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412240. [PMID: 39610168 DOI: 10.1002/adma.202412240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
Periodontal disease is a multifactorial, bacterially induced inflammatory disorder characterized by progressive destruction of periodontal tissues. Additionally, diabetes mellitus exacerbates periodontitis, resulting in expedited resorption of periodontal bone. However, methods such as mechanical debridement, anti-inflammatory medications, and surgical approaches often fail to eradicate local infections and inflammation, complicating the reconstruction of periodontal tissue structures. Consequently, there is an urgent need to devise a novel strategy for managing diabetic periodontal conditions. Here, a multifunctional controlled-release drug delivery system (GOE1) is developed by encapsulating self-assembled nanoparticles (consisting of chlorhexidine acetate and epigallocatechin-3-gallate) into a hydrogel matrix composed of gelatin methacryloyl and oxidized hyaluronic acid. In vitro experiments demonstrate that the GOE1 hydrogel possesses good antimicrobial, antioxidant and anti-inflammatory properties, and transgenic sequence genomics further illustrates that IL-17-producing RAW 264.7 macrophages are critical for mediating M1/M2 macrophage transition and provide favorable immune microenvironment. In addition, in vivo experiments reveal that GOE1 significantly ameliorates periodontal tissue inflammation and reduces the loss of alveolar bone by reducing inflammatory infiltration and collagen destruction. Overall, the GOE1 hydrogel offers a promising therapeutic option for managing diabetic periodontitis.
Collapse
Affiliation(s)
- Xinxin Ge
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiajun Hu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaoliang Qi
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yizuo Shi
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xiaojing Chen
- Department of Otolaryngology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yajing Xiang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hangbin Xu
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ying Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Yi Zhang
- Department of Burn and Plastic Surgery, Department of Wound Repair Surgery, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jianliang Shen
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, China
| | - Hui Deng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| |
Collapse
|
4
|
Zhao X, Qi X, Liu D, Che X, Wu G. A Novel Approach for Bladder Cancer Treatment: Nanoparticles as a Drug Delivery System. Int J Nanomedicine 2024; 19:13461-13483. [PMID: 39713223 PMCID: PMC11662911 DOI: 10.2147/ijn.s498729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024] Open
Abstract
Bladder cancer represents one of the most prevalent malignant neoplasms of the urinary tract. In the Asian context, it represents the eighth most common cancer in males. In 2022, there were approximately 613,791 individuals diagnosed with bladder cancer worldwide. Despite the availability of efficacious treatments for the two principal forms of bladder cancer, namely non-invasive and invasive bladder cancer, the high incidence of recurrence following treatment and the suboptimal outcomes observed in patients with high-grade and advanced disease represent significant concerns in the management of bladder cancer at this juncture. Nanoparticles have gained attention for their excellent properties, including stable physical properties, a porous structure that can be loaded with a variety of substances, and so on. The in-depth research on nanoparticles has led to their emergence as a new class of nanoparticles for combination therapy, due to their advantageous properties. These include the extension of the drug release window, the enhancement of drug bioavailability, the improvement of drug targeting ability, the reduction of local and systemic toxicity, and the simultaneous delivery of multiple drugs for combination therapy. As a result, nanoparticles have become a novel agent of the drug delivery system. The advent of nanoparticles has provided a new impetus for the development of non-surgical treatments for bladder cancer, including chemotherapy, immunotherapy, gene therapy and phototherapy. The unique properties of nanoparticles have facilitated the combination of diverse non-surgical therapeutic modalities, enhancing their overall efficacy. This review examines the recent advancements in the use of nanoparticles in non-surgical bladder cancer treatments, encompassing aspects such as delivery, therapeutic efficacy, and the associated toxicity of nanoparticles, as well as the challenges encountered in clinical applications.
Collapse
Affiliation(s)
- Xinming Zhao
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People’s Republic of China
| |
Collapse
|
5
|
Sun W, Yang Y, Wang C, Liu M, Wang J, Qiao S, Jiang P, Sun C, Jiang S. Epigallocatechin-3-gallate at the nanoscale: a new strategy for cancer treatment. PHARMACEUTICAL BIOLOGY 2024; 62:676-690. [PMID: 39345207 PMCID: PMC11443569 DOI: 10.1080/13880209.2024.2406779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 10/01/2024]
Abstract
CONTEXT Epigallocatechin-3-gallate (EGCG), the predominant catechin in green tea, has shown the potential to combat various types of cancer cells through its ability to modulate multiple signaling pathways. However, its low bioavailability and rapid degradation hinder its clinical application. OBJECTIVE This review explores the potential of nanoencapsulation to enhance the stability, bioavailability, and therapeutic efficacy of EGCG in cancer treatment. METHODS We searched the PubMed database from 2019 to the present, using 'epigallocatechin gallate', 'EGCG', and 'nanoparticles' as search terms to identify pertinent literature. This review examines recent nano-engineering technology advancements that encapsulate EGCG within various nanocarriers. The focus was on evaluating the types of nanoparticles used, their synthesis methods, and the technologies applied to optimize drug delivery, diagnostic capabilities, and therapeutic outcomes. RESULTS Nanoparticles improve the physicochemical stability and pharmacokinetics of EGCG, leading to enhanced therapeutic outcomes in cancer treatment. Nanoencapsulation allows for targeted drug delivery, controlled release, enhanced cellular uptake, and reduced premature degradation of EGCG. The studies highlighted include those where EGCG-loaded nanoparticles significantly inhibited tumor growth in various models, demonstrating enhanced penetration and efficacy through active targeting mechanisms. CONCLUSIONS Nanoencapsulation of EGCG represents a promising approach in oncology, offering multiple therapeutic benefits over its unencapsulated form. Although the results so far are promising, further research is necessary to fully optimize the design of these nanosystems to ensure their safety, efficacy, and clinical viability.
Collapse
Affiliation(s)
- Wenxue Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Yizhuang Yang
- Department of Pharmacy, Guilin Medical University, Guilin, China
| | - Cuiyun Wang
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Mengmeng Liu
- Department of Pharmacy, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Jianhua Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Sen Qiao
- Hepatological Surgery Department, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Pei Jiang
- Translational Pharmaceutical Laboratory, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
| | - Changgang Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shulong Jiang
- Clinical Medical Laboratory Center, Jining NO.1 People's Hospital, Shandong First Medical University, Jining, China
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Han J, Shen Y, Cao R, Wang W, Duan J, Duan J, Bao C. Active herbal ingredients and drug delivery design for tumor therapy: a review. Chin J Nat Med 2024; 22:1134-1162. [PMID: 39725513 DOI: 10.1016/s1875-5364(24)60741-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Indexed: 12/28/2024]
Abstract
Active herbal ingredients are gaining recognition for their potent anti-tumor efficacy, attributable to various mechanisms including tumor cell inhibition, immune system activation, and tumor angiogenesis inhibition. Recent studies have revealed that numerous anti-tumor herbal ingredients, such as ginsenosides, ursolic acid, oleanolic acid, and Angelica sinensis polysaccharides, can be utilized to develop smart drug carriers like liposomes, micelles, and nanoparticles. These carriers can deliver active herbal ingredients and co-deliver anti-tumor drugs to enhance drug accumulation at tumor sites, thereby improving anti-tumor efficacy. This study provides a comprehensive analysis of the mechanisms by which these active herbal ingredients-derived carriers enhance therapeutic outcomes. Additionally, it highlights the structural properties of these active herbal ingredients, demonstrating how their unique features can be strategically employed to design smart drug carriers with improved anti-tumor efficacy. The insights presented aim to serve as a reference and guide future innovations in the design and application of smart drug carriers for cancer therapy that leverage active herbal ingredients.
Collapse
Affiliation(s)
- Jing Han
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanxi Shen
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ruiying Cao
- School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weiren Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinao Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jialun Duan
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Chunjie Bao
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Jiangsu Province Key Laboratory of High Technology Research, Nanjing University of Chinese Medicine, Nanjing 210023, China; School of Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
7
|
Jeong DI, Kim HJ, Lee SY, Kim S, Huh JW, Ahn JH, Karmakar M, Kim HJ, Lee K, Lee J, Ko HJ, Cho HJ. Hydrogel design to overcome thermal resistance and ROS detoxification in photothermal and photodynamic therapy of cancer. J Control Release 2024; 366:142-159. [PMID: 38145660 DOI: 10.1016/j.jconrel.2023.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
Responsive heat resistance (by heat shock protein upregulation) and spontaneous reactive oxygen species (ROS) detoxification have been regarded as the major obstacles for photothermal/photodynamic therapy of cancer. To overcome the thermal resistance and improve ROS susceptibility in breast cancer therapy, Au ion-crosslinked hydrogels including indocyanine green (ICG) and polyphenol are devised. Au ion has been introduced for gel crosslinking (by catechol-Au3+ coordination), cellular glutathione depletion, and O2 production from cellular H2O2. ICG can generate singlet oxygen from O2 (for photodynamic therapy) and induce hyperthermia (for photothermal therapy) under the near-infrared laser exposure. (-)-Epigallocatechin gallate downregulates heat shock protein to overcome heat resistance during hyperthermia and exerts multiple anticancer functions in spite of its ironical antioxidant features. Those molecules are concinnously engaged in the hydrogel structure to offer fast gel transformation, syringe injection, self-restoration, and rheological tuning for augmented photo/chemotherapy of cancer. Intratumoral injection of multifunctional hydrogel efficiently suppressed the growth of primary breast cancer and completely eliminated the residual tumor mass. Proposed hydrogel system can be applied to tumor size reduction prior to surgery of breast cancer and the complete remission after its surgery.
Collapse
Affiliation(s)
- Da In Jeong
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun Jin Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song Yi Lee
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sungyun Kim
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ji Won Huh
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Hee Ahn
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Mrinmoy Karmakar
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Han-Jun Kim
- College of Pharmacy, Korea University, Sejong 30019, Republic of Korea
| | - KangJu Lee
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Republic of Korea
| | - Junmin Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Hyun-Jeong Ko
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Hyun-Jong Cho
- Department of Pharmacy, College of Pharmacy, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
8
|
Guo X, Zhang M, Qin J, Li Z, Rankl C, Jiang X, Zhang B, Wang D, Tang J. Revealing the Effect of Photothermal Therapy on Human Breast Cancer Cells: A Combined Study from Mechanical Properties to Membrane HSP70. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21965-21973. [PMID: 37127843 DOI: 10.1021/acsami.3c02964] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyperthermia-induced overexpression of heat shock protein 70 (HSP70) leads to the thermoresistance of cancer cells and reduces the efficiency of photothermal therapy (PTT). In contrast, cancer cell-specific membrane-associated HSP70 has been proven to activate antitumor immune responses. The dual effect of HSP70 on cancer cells inspires us that in-depth research of membrane HSP70 (mHSP70) during PTT treatment is essential. In this work, a PTT treatment platform for human breast cancer cells (MCF-7 cells) based on a mPEG-NH2-modified polydopamine (PDA)-coated gold nanorod core-shell structure (GNR@PDA-PEG) is developed. Using the force-distance curve-based atomic force microscopy (FD-based AFM), we gain insight into the PTT-induced changes in the morphology, mechanical properties, and mHSP70 expression and distribution of individual MCF-7 cells with high-resolution at the single-cell level. PTT treatment causes pseudopod contraction of MCF-7 cells and generates a high level of intracellular reactive oxygen species, which severely disrupt the cytoskeleton, leading to a decrease in cellular mechanical properties. The adhesion maps, which are recorded by aptamer A8 functional probes using FD-based AFM, reveal that PTT treatment causes a significant upregulation of mHSP70 expression and it starts to exhibit a partial aggregation distribution on the MCF-7 cell surface. This work not only exemplifies that AFM can be a powerful tool for detecting changes in cancer cells during PTT treatment but also provides a better view for targeting mHSP70 for cancer therapy.
Collapse
Affiliation(s)
- Xinyue Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Miaomiao Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Juan Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Zongjia Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Christian Rankl
- Research Center for Non-Destructive Testing GmbH, Science Park 2/2, OG, Altenberger Straße 69, A-4040 Linz, Austria
| | - Xiue Jiang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Bailin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
| | - Dapeng Wang
- University of Science and Technology of China, Hefei 230026, P.R. China
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Jilin Tang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
9
|
Zagami R, Castriciano MA, Romeo A, Scolaro LM. Kinetic Investigations on the Chiral Induction by Amino Acids in Porphyrin J-Aggregates. Int J Mol Sci 2023; 24:ijms24021695. [PMID: 36675210 PMCID: PMC9860692 DOI: 10.3390/ijms24021695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The self-assembling kinetics of the 5,10,15,20-tetrakis(4-sulfonato-phenyl)porphyrin (TPPS4) into nano-tubular J-aggregates under strong acidic condition and in the presence of amino acids as templating chiral reagents have been investigated through UV/Vis spectroscopy. The ability of the chiral species to transfer its chiral information to the final J-aggregate has been measured through circular dichroism (CD) spectroscopy and compared to the spontaneous symmetry breaking process usually observed in these nano-aggregates. Under the experimental conditions here selected, including mixing protocol, we have observed a large difference in the observed aggregation rates for the various amino acids, those with a positively charged side group being the most effective. On the contrary, these species are less efficient in transferring their chirality, exhibiting a quite low or modest enhancement in the observed dissymmetry g-factors. On the other side, hydrophobic and some hydrophilic amino acids are revealed to be very active in inducing chirality with a discrete increase of intensity of the detected CD bands with respect to the spontaneous symmetry breaking.
Collapse
Affiliation(s)
- Roberto Zagami
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Maria Angela Castriciano
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Andrea Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
| | - Luigi Monsù Scolaro
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
- CNR-ISMN Istituto per lo Studio dei Materiali Nanostrutturati c/o Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, University of Messina, V.le F. Stagno D’Alcontres, 31-98166 Messina, Italy
- Correspondence: ; Tel.: +39-090-676-5711
| |
Collapse
|