1
|
Zhang Q, Wu K, Liu R, Luo J. Dual Anticorrosive and Self-healing Coating Based on Multiresponsive Polyaniline Porous Microspheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20906-20917. [PMID: 39323030 DOI: 10.1021/acs.langmuir.4c01703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
In this work, a smart self-healing coating with long-term anticorrosion ability was developed based on multiresponsive polyaniline (PANI) porous microspheres. The polyaniline porous microspheres loaded with corrosion inhibitor (benzotriazole, BTA) was prepared by the emulsion template method and photopolymerization. The BTA loaded in the polyaniline microspheres acted as a corrosion inhibitor, while the polyaniline in the shell performed the multiple functions of corrosion inhibition, pH-responsive and photoresponsive release, and photothermal conversion. Owing to the inherent corrosion-inhibiting nature of BTA and PANI, the BTA-loaded polyaniline microsphere could endow coating with dual anticorrosive properties. The coating with polyaniline microspheres did not show any corrosion product after 700 h of salt spray testing, while obvious pitting corrosion could be observed for the blank coating after 100 h of the salt spray test. Thanks to the photothermal properties of PANI, the composite coating exhibited self-healing behavior under NIR light irradiation. The coating with 10 wt % polyaniline microspheres could achieve rapid closure and recover its barrier properties within 5 s of NIR irradiation. And the release of BTA could form a passivation film on scratches to further repair coating defects. The on-command responsive release, high healing efficiency, and excellent anticorrosion properties of this dual self-healing anticorrosion coating provide perspectives on extending the service life of metals.
Collapse
Affiliation(s)
- Qingqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
2
|
Jiang B, Mu M, Zhou Y, Zhang J, Li W. Nanoparticle-Empowered Core-Shell Microcapsules: From Architecture Design to Fabrication and Functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311897. [PMID: 38456762 DOI: 10.1002/smll.202311897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Compartmentalization is a powerful concept to integrate multiscale components with diverse functionalities into miniature architectures. Inspired by evolution-optimized cell compartments, synthetic core-shell capsules enable storage of actives and on-demand delivery of programmed functions, driving scientific progress across various fields including adaptive materials, sustainable electronics, soft robotics, and precision medicine. To simultaneously maximize structural stability and environmental sensitivity, which are the two most critical characteristics dictating performance, diverse nanoparticles are incorporated into microcapsules with a dense shell and a liquid core. Recent studies have revealed that these nano-additives not only enhance the intrinsic properties of capsules including mechanical robustness, optical behaviors, and thermal conductivity, but also empower dynamic features such as triggered release, deformable structures, and fueled mobility. In this review, the physicochemical principles that govern nanoparticle assembly during microencapsulation are examined in detail and the architecture-controlled functionalities are outlined. Through the analysis of how each primary method implants nanoparticles into microcapsules, their distinct spatial organizations within the core-shell structures are highlighted. Following a detailed discussion of the specialized functions enabled by specific nanoparticles, the vision of the required fundamental insights and experimental studies for this class of microcarriers to fulfill its potential are sketched.
Collapse
Affiliation(s)
- Bo Jiang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Manrui Mu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Zhou
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jun Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Wenle Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
3
|
Zhang Q, Li W, Liu X, Ma J, Gu Y, Liu R, Luo J. Polyaniline Microspheres with Corrosion Inhibition, Corrosion Sensing, and Photothermal Self-Healing Properties toward Intelligent Coating. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1461-1473. [PMID: 38127777 DOI: 10.1021/acsami.3c15158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A smart coating integrating functions of corrosion inhibition, self-healing, and corrosion-sensing was developed based on a polyaniline (PANI) microsphere-loading corrosion sensing probe (8-hydroxyquinone, 8-HQ). The PANI microsphere was prepared in a facile one-pot process via the combination of photopolymerization and an emulsion template. The 8-HQ-loaded PANI microsphere achieved three synergetic effects simultaneously: corrosion inhibition, corrosion sensing, and photothermal self-healing abilities. Benefiting from the corrosion inhibition effect of PANI, the coating with the PANI microsphere exhibited significantly enhanced anticorrosion behavior. After soaking in NaCl solution for 35 days, its impedance was maintained at 1.26 × 109 Ω·cm2, nearly 3 orders of magnitude higher than that of pure resin coating. Meanwhile, the encapsulated 8-HQ exhibited pH-responsive release behavior thanks to the pH-responsive characteristics of PANI, which could chelate with Al3+ ions to form 8-HQ-Al3+ coordinates with a conspicuous fluorescence, achieving a real-time corrosion diagnosing function. Moreover, benefiting from the photothermal property of PANI, the coating with the PANI microsphere displayed rapid crack closure behavior under NIR light irradiation, and the healing efficiency could reach 83.56% under near-infrared irradiation. This work presents an innovative strategy for fabricating an intelligent self-healing, self-reporting, and anticorrosion coating, which provides a new vision to prolong the lifetime of metals.
Collapse
Affiliation(s)
- Qingqing Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Wei Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Xiaoyi Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jin Ma
- Jiangsu Lanling Polymer Materials Co., Ltd., Changzhou 213119, China
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi 214122, China
| |
Collapse
|
4
|
Yimyai T, Crespy D, Rohwerder M. Corrosion-Responsive Self-Healing Coatings. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300101. [PMID: 36939547 DOI: 10.1002/adma.202300101] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Organic coatings are one of the most popular and powerful strategies for protecting metals against corrosion. They can be applied in different ways, such as by dipping, spraying, electrophoresis, casting, painting, or flow coating. They offer great flexibility of material designs and cost effectiveness. Moreover, self-healing has evolved as a new research topic for protective organic coatings in the last two decades. Responsive materials play a crucial role in this new research field. However, for targeting the development of high-performance self-healing coatings for corrosion protection, it is not sufficient just to focus on smart responsive materials and suitable active agents for self-healing. A better understanding of how coatings can react on different stimuli induced by corrosion, how these stimuli can spread in the coating, and how the released agents can reach the corroding defect is also of high importance. Such knowledge would allow the design of coatings that are optimized for specific applications. Herein, the requirements and possibilities from the corrosion and synthesis perspectives for designing materials for preparing self-healing coatings for corrosion protection are discussed.
Collapse
Affiliation(s)
- Tiwa Yimyai
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, 21210, Thailand
| | - Michael Rohwerder
- Max-Planck-Institut für Eisenforschung GmbH, 40237, Düsseldorf, Germany
| |
Collapse
|
5
|
Tao J, Wu K, Chen Y, Li W, Gu Y, Liu R, Luo J. A facile one-pot strategy for the preparation of porous polymeric microspheres via UV irradiation-induced polymerization in emulsions. SOFT MATTER 2023; 19:1407-1417. [PMID: 36723259 DOI: 10.1039/d2sm01459a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, a facile one-pot strategy was developed to prepare porous polymeric microspheres via photopolymerization, where organic solvents functioned as porogens. In this strategy, an oil phase containing organic solvents and photopolymerizable materials was stabilized in water to form a stable oil-in-water emulsion. Upon UV irradiation, the photopolymerizable materials (photosensitive monomers/photosensitive prepolymers) underwent polymerization to form microspheres and the subsequent removal of organic solvents left pores in microspheres, leading to the generation of porous polymeric microspheres with high yielding. The effects of organic solvents and the chemical structure and concentration of photopolymerizable materials on the microsphere structure were systematically explored. It was found that the polarity of the organic solvents played a decisive role in the preparation of porous microspheres. In addition, the increases in the solvent content and functionalities of photopolymerizable materials were more favorable for the generation of porous microspheres. This strategy could be applicable for a wide selection of photopolymerizable materials, which endowed this strategy with good applicability. The preparation of porous microspheres by this method was facile and easy to handle, enabling the scalable preparation of porous microspheres. In addition, the whole process can be completed within a few minutes at ambient temperature, which was time-saving and energy-saving.
Collapse
Affiliation(s)
- Junjie Tao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Kaiyun Wu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Yaxin Chen
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Wei Li
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Yao Gu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Ren Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| | - Jing Luo
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
| |
Collapse
|
6
|
Xie D, Jiang Y, Li K, Yang X, Zhang Y. Pickering Emulsions Stabilized by Mesoporous Nanoparticles with Different Morphologies in Combination with DTAB. ACS OMEGA 2022; 7:29153-29160. [PMID: 36033667 PMCID: PMC9404459 DOI: 10.1021/acsomega.2c03215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 05/14/2023]
Abstract
The morphology of nanoparticles plays a significant role in the properties and applications of Pickering emulsions. Oil-in-water (O/W) Pickering emulsions were prepared using spherical, rod-like, and thread-like mesoporous silica nanoparticles (MSNPs) in combination with the cationic surfactant dodecyltrimethylammonium bromide (DTAB) as a stabilizer. The effects of nanoparticle morphology on the stability and stimuli-responsive properties of Pickering emulsions were investigated. For spherical and rod-like MSNP systems, stable Pickering emulsions were obtained at DTAB concentrations above 0.2 mmol·L-1. Stable Pickering emulsions containing thread-like MSNPs were produced at lower DTAB concentrations of approximately 0.1 mmol·L-1. The droplets with thread-like MSNPs were extremely large with an average diameter around 700 μm at DTAB concentrations of 0.1-0.3 mmol·L-1, which were approximately 20 times larger than those of conventional droplets. Scanning electron microscopy (SEM) images showed that all three types of MSNPs were located at the O/W interfaces. Irrespective of the morphology of the MSNPs, all the stable Pickering emulsions retained their original appearance for more than 6 months. By adding NaOH and HCl alternatively, the Pickering emulsions containing spherical and rod-like MSNPs could be switched between unstable and stable states more than 60 times. The Pickering emulsions containing thread-like MSNPs, by contrast, could have their droplet size switched between large and small more than 10 times without any obvious phase separation. The high anisotropy of thread-like MSNPs contributed to the low interface curvature of the droplets. This study revealed the relationship between the morphology of MSNPs and the characteristics of Pickering emulsions. These results enrich our knowledge about the formulation of Pickering emulsions and expand their applications.
Collapse
|
7
|
Bouabdallaoui M, El Guerraf A, Aouzal Z, Bazzaoui M, Wang R, Bazzaoui EA. Extremely adherent and protective polymeric coating based on polydiphenylamine electrodeposited on steel in an organic electrolytic medium. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03215-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Application Progress of Modified Chitosan and Its Composite Biomaterials for Bone Tissue Engineering. Int J Mol Sci 2022; 23:ijms23126574. [PMID: 35743019 PMCID: PMC9224397 DOI: 10.3390/ijms23126574] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/28/2022] Open
Abstract
In recent years, bone tissue engineering (BTE), as a multidisciplinary field, has shown considerable promise in replacing traditional treatment modalities (i.e., autografts, allografts, and xenografts). Since bone is such a complex and dynamic structure, the construction of bone tissue composite materials has become an attractive strategy to guide bone growth and regeneration. Chitosan and its derivatives have been promising vehicles for BTE owing to their unique physical and chemical properties. With intrinsic physicochemical characteristics and closeness to the extracellular matrix of bones, chitosan-based composite scaffolds have been proved to be a promising candidate for providing successful bone regeneration and defect repair capacity. Advances in chitosan-based scaffolds for BTE have produced efficient and efficacious bio-properties via material structural design and different modifications. Efforts have been put into the modification of chitosan to overcome its limitations, including insolubility in water, faster depolymerization in the body, and blood incompatibility. Herein, we discuss the various modification methods of chitosan that expand its fields of application, which would pave the way for future applied research in biomedical innovation and regenerative medicine.
Collapse
|