1
|
Ventrella FM, Boffetta G, Cencini M, De Lillo F. Modeling straight and circle swimmers: from single swimmer to collective motion. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:65. [PMID: 39551883 DOI: 10.1140/epje/s10189-024-00458-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024]
Abstract
We propose a simple numerical model for the motion of microswimmers based on the immersed boundary method. The swimmer, either pusher or puller, is represented by a distribution of point forces corresponding to the body and the flagellum. We study in particular the minimal model consisting of only three beads (two for the body and one for the flagellum) connected by rigid, inextensible links. When the beads are collinear, standard straight swimming is realized and, in the absence of propulsion, we demonstrate that the model recovers Jeffery's equation for a thin rod. Conversely, by imposing an angle between body and flagellum the swimmer moves on circular orbits. We discuss how two swimmers, in collinear or non-collinear geometry, scatter upon encounter. Finally, we explore the dynamics of a large number of swimmers reacting to one another only via hydrodynamic interactions, and exemplify their complex collective dynamics in both straight and circular swimmers.
Collapse
Affiliation(s)
| | - Guido Boffetta
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, Via P. Giuria 1, 10125, Torino, Italy
| | - Massimo Cencini
- Istituto dei Sistemi Complessi, CNR, via dei Taurini 19, 00185, Rome, Italy
- INFN, Sezione di Roma 2 Tor Vergata, Rome, Italy
| | - Filippo De Lillo
- Dipartimento di Fisica and INFN, Università degli Studi di Torino, Via P. Giuria 1, 10125, Torino, Italy
| |
Collapse
|
2
|
Keta YE, Klamser JU, Jack RL, Berthier L. Emerging Mesoscale Flows and Chaotic Advection in Dense Active Matter. PHYSICAL REVIEW LETTERS 2024; 132:218301. [PMID: 38856251 DOI: 10.1103/physrevlett.132.218301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/23/2023] [Accepted: 04/17/2024] [Indexed: 06/11/2024]
Abstract
We study two models of overdamped self-propelled disks in two dimensions, with and without aligning interactions. Both models support active mesoscale flows, leading to chaotic advection and transport over large length scales in their homogeneous dense fluid states, away from dynamical arrest. They form streams and vortices reminiscent of multiscale flow patterns in turbulence. We show that the characteristics of these flows do not depend on the specific details of the active fluids, and result from the competition between crowding effects and persistent propulsions. This observation suggests that dense active suspensions of self-propelled particles present a type of "active turbulence" distinct from collective flows reported in other types of active systems.
Collapse
Affiliation(s)
- Yann-Edwin Keta
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
| | - Juliane U Klamser
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
| | - Robert L Jack
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université de Montpellier and CNRS (UMR 5221), 34095 Montpellier, France
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Yang Q, Jiang M, Picano F, Zhu L. Shaping active matter from crystalline solids to active turbulence. Nat Commun 2024; 15:2874. [PMID: 38570495 PMCID: PMC11258367 DOI: 10.1038/s41467-024-46520-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024] Open
Abstract
Active matter drives its constituent agents to move autonomously by harnessing free energy, leading to diverse emergent states with relevance to both biological processes and inanimate functionalities. Achieving maximum reconfigurability of active materials with minimal control remains a desirable yet challenging goal. Here, we employ large-scale, agent-resolved simulations to demonstrate that modulating the activity of a wet phoretic medium alone can govern its solid-liquid-gas phase transitions and, subsequently, laminar-turbulent transitions in fluid phases, thereby shaping its emergent pattern. These two progressively emerging transitions, hitherto unreported, bring us closer to perceiving the parallels between active matter and traditional matter. Our work reproduces and reconciles seemingly conflicting experimental observations on chemically active systems, presenting a unified landscape of phoretic collective dynamics. These findings enhance the understanding of long-range, many-body interactions among phoretic agents, offer new insights into their non-equilibrium collective behaviors, and provide potential guidelines for designing reconfigurable materials.
Collapse
Affiliation(s)
- Qianhong Yang
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore
| | - Maoqiang Jiang
- School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan, Hubei, PR China
| | - Francesco Picano
- Department of Industrial Engineering and CISAS "G. Colombo", University of Padova, Padova, Italy
| | - Lailai Zhu
- Department of Mechanical Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
4
|
Hu X, Chen W, Lin J, Nie D, Zhu Z, Lin P. The motion of micro-swimmers over a cavity in a micro-channel. SOFT MATTER 2024; 20:2789-2803. [PMID: 38445957 DOI: 10.1039/d3sm01589k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This article combines the lattice Boltzmann method (LBM) with the squirmer model to investigate the motion of micro-swimmers in a channel-cavity system. The study analyses various influential factors, including the value of the squirmer-type factor (β), the swimming Reynolds number (Rep), the size of the cavity, initial position and particle size on the movement of micro-swimmers within the channel-cavity system. We simultaneously studied three types of squirmer models, Puller (β > 0), Pusher (β < 0), and Neutral (β = 0) swimmers. The findings reveal that the motion of micro-swimmers is determined by the value of β and Rep, which can be classified into six distinct motion modes. For Puller and Pusher, when the β value is constant, an increase in Rep will lead to transition in the motion mode. Moreover, the appropriate depth of cavity within the channel-cavity system plays a crucial role in capturing and separating Neutral swimmers. This study, for the first time, explores the effect of complex channel-cavity systems on the behaviour of micro-swimmers and highlights their separation and capture ability. These findings offer novel insights for the design and enhancement of micro-channel structures in achieving efficient separation and capture of micro-swimmers.
Collapse
Affiliation(s)
- Xiao Hu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Weijin Chen
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Jianzhong Lin
- Zhejiang Provincial Engineering Research Center for the Safety of Pressure Vessel and Pipeline, Ningbo University, Ningbo, Zhejiang 315211, PR China
| | - Deming Nie
- Institute of Fluid Mechanics, China Jiliang University, Hangzhou, Zhejiang 310018, China.
| | - Zuchao Zhu
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| | - Peifeng Lin
- Key Laboratory of Fluid Transmission Technology of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
5
|
Partovifard A, Grawitter J, Stark H. Controlling active turbulence by activity patterns. SOFT MATTER 2024; 20:1800-1814. [PMID: 38305449 DOI: 10.1039/d3sm01050c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
By patterning activity in space, one can control active turbulence. To show this, we use Doi's hydrodynamic equations of a semidilute solution of active rods. A linear stability analysis reveals the resting isotropic fluid to be unstable above an absolute pusher activity. The emergent activity-induced paranematic state displays active turbulence, which we characterize by different quantities including the energy spectrum, which shows the typical power-law decay with exponent -4. Then, we control the active turbulence by a square lattice of circular spots where activity is switched off. In the parameter space lattice constant versus surface-to-surface distance of the spots, we identify different flow states. Most interestingly, for lattice constants below the vorticity correlation length and for spot distances smaller than the nematic coherence length, we observe a multi-lane flow state, where flow lanes with alternating flow directions are separated by a street of vortices. The flow pattern displays pronounced multistability and also appears transiently at the transition to the isotropic active-turbulence state. At larger lattice constants a trapped vortex state is identified with a non-Gaussian vorticity distribution due to the low flow vorticity at the spots. It transitions to conventional active turbulence for increasing spot distance.
Collapse
Affiliation(s)
- Arghavan Partovifard
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Josua Grawitter
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|
6
|
Patel K, Stark H. Fluid interfaces laden by force dipoles: towards active matter-driven microfluidic flows. SOFT MATTER 2023; 19:2241-2253. [PMID: 36912619 DOI: 10.1039/d3sm00043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In recent years, nonlinear microfluidics in combination with lab-on-a-chip devices has opened a new avenue for chemical and biomedical applications such as droplet formation and cell sorting. In this article, we integrate ideas from active matter into a microfluidic setting, where two fluid layers with identical densities but different viscosities flow through a microfluidic channel. Most importantly, the fluid interface is laden with active particles that act with dipolar forces on the adjacent fluids and thereby generate flows. We perform lattice-Boltzmann simulations and combine them with phase field dynamics of the interface and an advection-diffusion equation for the density of active particles. We show that only contractile force dipoles can destabilize the flat fluid interface. It develops a viscous finger from which droplets break up. For interfaces with non-zero surface tension, a critical value of activity equal to the surface tension is necessary to trigger the instability. Since activity depends on the density of force dipoles, the interface can develop steady deformation. Lastly, we demonstrate how to control droplet formation using switchable activity.
Collapse
Affiliation(s)
- Kuntal Patel
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| | - Holger Stark
- Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstr. 36, 10623 Berlin, Germany.
| |
Collapse
|