1
|
Zhu J, Cao Y, Qin X, Liang Q. Budding of Asymmetric Lipid Bilayers: Effects of Cholesterol, Anionic Lipid, and Electric Field. J Phys Chem B 2024. [PMID: 39670354 DOI: 10.1021/acs.jpcb.4c07782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Membrane budding is vital for various cellular processes such as synaptic activity regulation, vesicle transport and release, and endocytosis/exocytosis. Although protein-mediated membrane budding has been extensively investigated, the effects of the lipid asymmetry of the two leaflets and the asymmetrically electrical environments of the cellular membrane on membrane budding remain elusive. In this work, using coarse-grained molecular dynamics simulations, we systematically investigate the impacts of lipid bilayer asymmetry and external electric fields mimicking the asymmetric membrane potential on the membrane budding. The results show that the differential stress induced by the asymmetric distribution of lipids in the two leaflets is a crucial factor for the membrane budding. The unidirectional flip of cholesterol induced by the membrane curvature and the asymmetric ion adsorption induced by the anionic lipids promote the budding process. Furthermore, the external electric field applied perpendicularly to the bilayer plane increases the transmembrane potential and produces an additional differential stress across the leaflets by imposing an asymmetric torque on the lipid headgroups in the two leaflets, facilitating the membrane budding. These findings offer insights into how the structural and the environmental asymmetry in natural cellular membranes influence membrane budding in cellular processes.
Collapse
Affiliation(s)
- Jin Zhu
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Yu Cao
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Xiaoxue Qin
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| | - Qing Liang
- Center for Statistical and Theoretical Condensed Matter Physics & Department of Physics, Zhejiang Normal University, Jinhua 321004, China
- Zhejiang Institute of Photoelectronics & Zhejiang Institute for Advanced Light Source, Zhejiang Normal University, Jinhua, Zhejiang 321004, China
| |
Collapse
|
2
|
Deserno M. Biomembranes balance many types of leaflet asymmetries. Curr Opin Struct Biol 2024; 87:102832. [PMID: 38735128 DOI: 10.1016/j.sbi.2024.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 04/22/2024] [Indexed: 05/14/2024]
Abstract
Many biological membranes host different lipid species in their two leaflets. Since their spontaneous curvatures are typically not the same, this compositional asymmetry generally entails bending torques, which can be counteracted by differential stress-the difference between the two leaflet tensions. This stress, in turn, can affect elastic parameters or phase behavior of the membrane or each individual leaflet, or push easily flippable species, especially cholesterol, from the compressed leaflet into the tense leaflet. In short, breaking the symmetry of a single observable (to wit: composition), essentially breaks all other symmetries as well, with many potentially interesting consequences. This brief report examines the elastic aspects of this interplay, focusing on some elementary conditions of mechanical and thermodynamic equilibrium, but also shows how this poses novel questions that we are only beginning to appreciate.
Collapse
Affiliation(s)
- Markus Deserno
- Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA 15213, USA.
| |
Collapse
|
3
|
Reagle T, Xie Y, Li Z, Carnero W, Baumgart T. Methyl-β-cyclodextrin asymmetrically extracts phospholipid from bilayers, granting tunable control over differential stress in lipid vesicles. SOFT MATTER 2024; 20:4291-4307. [PMID: 38758097 PMCID: PMC11135146 DOI: 10.1039/d3sm01772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 05/01/2024] [Indexed: 05/18/2024]
Abstract
Lipid asymmetry - that is, a nonuniform lipid distribution between the leaflets of a bilayer - is a ubiquitous feature of biomembranes and is implicated in several cellular phenomena. Differential tension - that is, unequal lateral monolayer tensions comparing the leaflets of a bilayer- is closely associated with lipid asymmetry underlying these varied roles. Because differential tension is not directly measurable in combination with the fact that common methods to adjust this quantity grant only semi-quantitative control over it, a detailed understanding of lipid asymmetry and differential tension are impeded. To overcome these challenges, we leveraged reversible complexation of phospholipid by methyl-β-cyclodextrin (mbCD) to tune the direction and magnitude of lipid asymmetry in synthetic vesicles. Lipid asymmetry generated in our study induced (i) vesicle shape changes and (ii) gel-liquid phase coexistence in 1-component vesicles. By applying mass-action considerations to interpret our findings, we discuss how this approach provides access to phospholipid thermodynamic potentials in bilayers containing lipid asymmetry (which are coupled to the differential tension of a bilayer). Because lipid asymmetry yielded by our approach is (i) tunable and (ii) maintained over minute to hour timescales, we anticipate that this approach will be a valuable addition to the experimental toolbox for systematic investigation into the biophysical role(s) of lipid asymmetry (and differential tension).
Collapse
Affiliation(s)
- Tyler Reagle
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Yuxin Xie
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Zheyuan Li
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Warner Carnero
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| | - Tobias Baumgart
- University of Pennsylvania, Chemistry Department, 231 South 34th Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
4
|
Lipowsky R. Multiscale remodeling of biomembranes and vesicles. Methods Enzymol 2024; 701:175-236. [PMID: 39025572 DOI: 10.1016/bs.mie.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biomembranes and vesicles cover a wide range of length scales. Indeed, small nanovesicles have a diameter of a few tens of nanometers whereas giant vesicles can have diameters up to hundreds of micrometers. The remodeling of giant vesicles on the micron scale can be observed by light microscopy and understood by the theory of curvature elasticity, which represents a top-down approach. The theory predicts the formation of multispherical shapes as recently observed experimentally. On the nanometer scale, much insight has been obtained via coarse-grained molecular dynamics simulations of nanovesicles, which provides a bottom-up approach based on the lipid numbers assembled in the two bilayer leaflets and the resulting leaflet tensions. The remodeling processes discussed here include the shape transformations of vesicles, their morphological responses to the adhesion of condensate droplets, the instabilities of lipid bilayers and nanovesicles, as well as the topological transformations of vesicles by membrane fission and fusion. The latter processes determine the complex topology of the endoplasmic reticulum.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
5
|
Watanabe H, Hanashima S, Yano Y, Yasuda T, Murata M. Passive Translocation of Phospholipids in Asymmetric Model Membranes: Solid-State 1H NMR Characterization of Flip-Flop Kinetics Using Deuterated Sphingomyelin and Phosphatidylcholine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:15189-15199. [PMID: 37729012 DOI: 10.1021/acs.langmuir.3c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Although lateral and inter-leaflet lipid-lipid interactions in cell membranes play roles in maintaining asymmetric lipid bilayers, the molecular basis of these interactions is largely unknown. Here, we established a method to determine the distribution ratio of phospholipids between the outer and inner leaflets of asymmetric large unilamellar vesicles (aLUVs). The trimethylammonium group, (CH3)3N+, in the choline headgroup of N-palmitoyl-sphingomyelin (PSM) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) gave rise to a relatively sharp signal in magic-angle spinning solid-state 1H NMR (MAS-ss-1H NMR). PSM and DOPC have the same headgroup structure, but one phospholipid was selectively observed by deuterating the trimethylammonium group of the other phospholipid. The addition of Pr3+ to the medium surrounding aLUVs selectively shifted the chemical shift of the (CH3)3N+ group in the outer leaflet from that in the inner leaflet, which allowed estimation of the inter-leaflet distribution ratio of the unlabeled lipid in aLUVs. Using this method, we evaluated the translocation of PSM and DOPC between the outer and inner leaflets of the cholesterol-containing aLUVs, with PSM and DOPC mostly distributed in the outer and inner leaflets, respectively, immediately after aLUV preparation; their flip and flop rates were approximately 2.7 and 6.4 × 10-6 s-1, respectively. During the passive symmetrization of aLUVs, the lipid translocation rate was decreased due to changes in the membrane order, probably through the formation of the registered liquid-ordered domains. Comparison of the result with that of symmetric LUVs revealed that lipid asymmetry may not significantly affect the lipid translocation rates, while the lateral lipid-lipid interaction may be a dominant factor in lipid translocation under these conditions. These findings highlight the importance of considering the effects of lateral lipid interactions within the same leaflet on lipid flip-flop rates when evaluating the asymmetry of phospholipids in the cell membrane.
Collapse
Affiliation(s)
- Hirofumi Watanabe
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Shinya Hanashima
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Graduate School of Engineering, Tottori University, 4-101 Koyama-cho Minami, Tottori 680-8550, Japan
| | - Yo Yano
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
| | - Tomokazu Yasuda
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| | - Michio Murata
- Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, Toyonaka 560-0043, Osaka, Japan
| |
Collapse
|
6
|
Zamaletdinov MF, Miettinen MS, Lipowsky R. Probing the elastic response of lipid bilayers and nanovesicles to leaflet tensions via volume per lipid. SOFT MATTER 2023; 19:6929-6944. [PMID: 37664906 DOI: 10.1039/d3sm00351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Biological and biomimetic membranes are based on lipid bilayers, consisting of two monolayers or leaflets. One important but challenging physical parameter of these membranes is their tension. For a long time, this tension was explicitly or implicitly taken to be the bilayer tension, acting on the whole bilayer membrane. More recently, it has been realized that it is useful to decompose the bilayer tension into two leaflet tensions and that these tensions are accessible to molecular dynamics simulations. To divide the bilayer up into two leaflets, it is necessary to introduce a midsurface that defines the spatial extent of the two leaflets. In previous studies, this midsurface was obtained from the density profiles across the bilayer and was then used to compute the molecular area per lipid. Here, we develop an alternative approach based on three-dimensional Voronoi tessellation and molecular volume per lipid. Using this volume-based approach, we determine the reference states with tensionless leaflets as well as the optimal volumes and areas per lipid. The optimal lipid volumes have practically the same value in both leaflets, irrespective of the size and curvature of the nanovesicles, whereas the optimal lipid areas are different for the two leaflets and depend on the vesicle size. In addition, we introduce lateral volume compressibilities to describe the elastic response of the lipid volume to the leaflet tensions. We show that the outer leaflet of a nanovesicle is more densely packed and less compressible than the inner leaflet and that this difference becomes more pronounced for smaller vesicles.
Collapse
Affiliation(s)
- Miftakh F Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| | - Markus S Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
- University of Bergen, Department of Chemistry, 5007 Bergen, Norway
- Computational Biology Unit, Department of Informatics, 5008 Bergen, Norway.
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany.
| |
Collapse
|
7
|
Chaisson EH, Heberle FA, Doktorova M. Building Asymmetric Lipid Bilayers for Molecular Dynamics Simulations: What Methods Exist and How to Choose One? MEMBRANES 2023; 13:629. [PMID: 37504995 PMCID: PMC10384462 DOI: 10.3390/membranes13070629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/29/2023]
Abstract
The compositional asymmetry of biological membranes has attracted significant attention over the last decade. Harboring more differences from symmetric membranes than previously appreciated, asymmetric bilayers have proven quite challenging to study with familiar concepts and techniques, leaving many unanswered questions about the reach of the asymmetry effects. One particular area of active research is the computational investigation of composition- and number-asymmetric lipid bilayers with molecular dynamics (MD) simulations. Offering a high level of detail into the organization and properties of the simulated systems, MD has emerged as an indispensable tool in the study of membrane asymmetry. However, the realization that results depend heavily on the protocol used for constructing the asymmetric bilayer models has sparked an ongoing debate about how to choose the most appropriate approach. Here we discuss the underlying source of the discrepant results and review the existing methods for creating asymmetric bilayers for MD simulations. Considering the available data, we argue that each method is well suited for specific applications and hence there is no single best approach. Instead, the choice of a construction protocol-and consequently, its perceived accuracy-must be based primarily on the scientific question that the simulations are designed to address.
Collapse
Affiliation(s)
- Emily H. Chaisson
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Frederick A. Heberle
- Department of Chemistry, University of Tennessee Knoxville, Knoxville, TN 37916, USA
| | - Milka Doktorova
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22903, USA
| |
Collapse
|
8
|
Lipowsky R, Ghosh R, Satarifard V, Sreekumari A, Zamaletdinov M, Różycki B, Miettinen M, Grafmüller A. Leaflet Tensions Control the Spatio-Temporal Remodeling of Lipid Bilayers and Nanovesicles. Biomolecules 2023; 13:926. [PMID: 37371505 PMCID: PMC10296112 DOI: 10.3390/biom13060926] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Biological and biomimetic membranes are based on lipid bilayers, which consist of two monolayers or leaflets. To avoid bilayer edges, which form when the hydrophobic core of such a bilayer is exposed to the surrounding aqueous solution, a single bilayer closes up into a unilamellar vesicle, thereby separating an interior from an exterior aqueous compartment. Synthetic nanovesicles with a size below 100 nanometers, traditionally called small unilamellar vesicles, have emerged as potent platforms for the delivery of drugs and vaccines. Cellular nanovesicles of a similar size are released from almost every type of living cell. The nanovesicle morphology has been studied by electron microscopy methods but these methods are limited to a single snapshot of each vesicle. Here, we review recent results of molecular dynamics simulations, by which one can monitor and elucidate the spatio-temporal remodeling of individual bilayers and nanovesicles. We emphasize the new concept of leaflet tensions, which control the bilayers' stability and instability, the transition rates of lipid flip-flops between the two leaflets, the shape transformations of nanovesicles, the engulfment and endocytosis of condensate droplets and rigid nanoparticles, as well as nanovesicle adhesion and fusion. To actually compute the leaflet tensions, one has to determine the bilayer's midsurface, which represents the average position of the interface between the two leaflets. Two particularly useful methods to determine this midsurface are based on the density profile of the hydrophobic lipid chains and on the molecular volumes.
Collapse
Affiliation(s)
- Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Icahn School of Medicine Mount Sinai, New York, NY 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Yale Institute for Network Science, Yale University, New Haven, CT 06520, USA
| | - Aparna Sreekumari
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Physics, Indian Institute of Technology Palakkad, Palakkad 678 623, India
| | - Miftakh Zamaletdinov
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Bartosz Różycki
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw, Poland
| | - Markus Miettinen
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
- Department of Chemistry, University of Bergen, 5020 Bergen, Norway
| | - Andrea Grafmüller
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
9
|
Golani G, Schwarz US. High curvature promotes fusion of lipid membranes: Predictions from continuum elastic theory. Biophys J 2023; 122:1868-1882. [PMID: 37077047 PMCID: PMC10209146 DOI: 10.1016/j.bpj.2023.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/19/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023] Open
Abstract
The fusion of lipid membranes progresses through a series of hemifusion intermediates with two significant energy barriers related to the formation of stalk and fusion pore, respectively. These energy barriers determine the speed and success rate of many critical biological processes, including the fusion of highly curved membranes, for example synaptic vesicles and enveloped viruses. Here we use continuum elastic theory of lipid monolayers to determine the relationship between membrane shape and energy barriers to fusion. We find that the stalk formation energy decreases with curvature by up to 31 kBT in a 20-nm-radius vesicle compared with planar membranes and by up to 8 kBT in the fusion of highly curved, long, tubular membranes. In contrast, the fusion pore formation energy barrier shows a more complicated behavior. Immediately after stalk expansion to the hemifusion diaphragm, the fusion pore formation energy barrier is low (15-25 kBT) due to lipid stretching in the distal monolayers and increased tension in highly curved vesicles. Therefore, the opening of the fusion pore is faster. However, these stresses relax over time due to lipid flip-flop from the proximal monolayer, resulting in a larger hemifusion diaphragm and a higher fusion pore formation energy barrier, up to 35 kBT. Therefore, if the fusion pore fails to open before significant lipid flip-flop takes place, the reaction proceeds to an extended hemifusion diaphragm state, which is a dead-end configuration in the fusion process and can be used to prevent viral infections. In contrast, in the fusion of long tubular compartments, the surface tension does not accumulate due to the formation of the diaphragm, and the energy barrier for pore expansion increases with curvature by up to 11 kBT. This suggests that inhibition of polymorphic virus infection could particularly target this feature of the second barrier.
Collapse
Affiliation(s)
- Gonen Golani
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant Center for Quantitative Biology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
10
|
Wu J, Cui Z, Su Y, Yu Y, Yue B, Hu J, Qu J, Tian D, Zhan X, Li J, Cai Y. Biomimetic cellulose-nanocrystalline-based composite membrane with high flux for efficient purification of oil-in-water emulsions. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130729. [PMID: 36621295 DOI: 10.1016/j.jhazmat.2023.130729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The massive discharge of oily wastewater and oil spills are causing serious pollution to water resources. It is urgent to require clean and efficient method of purifying oily emulsions. Although the separation membranes with selective wettability have been widely used in the efficient purification of oil/water emulsions. It is still very challenging to develop functional films that are environmentally friendly, fouling resistant, inexpensive, easy to prepare, easy to scale, and highly efficient. Cellulose nanocrystalline-based composite membranes (CCM) were prepared by surface-initiated atom transfer radical polymerization (SATRP) and vacuum self-assembly. The prepared CCM is superhydrophilic and superoleophobic underwater due to the hydrophilic nature of the modified cellulose-nanocrystalline and the micro-nano surface structure. The CCM shows high separation efficiency (> 99.9 %), high flux (16,692 L-1·m-2·h-1·bar-1) for surfactant-stabilized oil-in-water emulsions, good cycle stability and anti-fouling performance. This biomass-derived membrane is green, cheap, easy to manufacture, scalable, super-wettability, and durability, it promises to be an alternative to separation membranes in today's market.
Collapse
Affiliation(s)
- Jianfei Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Ziwei Cui
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yuxuan Su
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Yang Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Bo Yue
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xianxu Zhan
- Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| | - Jianzhang Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Key Laboratory of Wood Material Science and Application (Beijing Forestry University), Ministry of Education, Beijing 100083, PR China.
| | - Yahui Cai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, PR China; Dehua Tubaobao New Decoration Material Co., Ltd., Huzhou 313200, PR China.
| |
Collapse
|
11
|
Ghosh R, Satarifard V, Lipowsky R. Different pathways for engulfment and endocytosis of liquid droplets by nanovesicles. Nat Commun 2023; 14:615. [PMID: 36739277 PMCID: PMC9899248 DOI: 10.1038/s41467-023-35847-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/04/2023] [Indexed: 02/06/2023] Open
Abstract
During endocytosis of nanoparticles by cells, the cellular membranes engulf the particles, thereby forming a closed membrane neck that subsequently undergoes fission. For solid nanoparticles, these endocytic processes have been studied in some detail. Recently, such processes have also been found for liquid and condensate droplets, both in vitro and in vivo. These processes start with the spreading of the droplet onto the membrane followed by partial or complete engulfment of the droplet. Here, we use molecular dynamics simulations to study these processes at the nanoscale, for nano-sized droplets and vesicles. For both partial and complete engulfment, we observe two different endocytic pathways. Complete engulfment leads to a closed membrane neck which may be formed in a circular or strongly non-circular manner. A closed circular neck undergoes fission, thereby generating two nested daughter vesicles whereas a non-circular neck hinders the fission process. Likewise, partial engulfment of larger droplets leads to open membrane necks which can again have a circular or non-circular shape. Two key parameters identified here for these endocytic pathways are the transbilayer stress asymmetry of the vesicle membrane and the positive or negative line tension of the membrane-droplet contact line.
Collapse
Affiliation(s)
- Rikhia Ghosh
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Icahn School of Medicine Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Vahid Satarifard
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.,Yale Institute for Network Science, Yale University, New Haven, CT, 06520, USA
| | - Reinhard Lipowsky
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424, Potsdam, Germany.
| |
Collapse
|
12
|
Close, but not too close: a mesoscopic description of (a)symmetry and membrane shaping mechanisms. Emerg Top Life Sci 2023; 7:81-93. [PMID: 36645200 DOI: 10.1042/etls20220078] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/13/2022] [Accepted: 12/22/2022] [Indexed: 01/17/2023]
Abstract
Biomembranes are fundamental to our understanding of the cell, the basic building block of all life. An intriguing aspect of membranes is their ability to assume a variety of shapes, which is crucial for cell function. Here, we review various membrane shaping mechanisms with special focus on the current understanding of how local curvature and local rigidity induced by membrane proteins leads to emerging forces and consequently large-scale membrane deformations. We also argue that describing the interaction of rigid proteins with membranes purely in terms of local membrane curvature is incomplete and that changes in the membrane rigidity moduli must also be considered.
Collapse
|