1
|
Trayford C, Ibrahim DM, van Rijt S. Ion Doped Hollow Silica Nanoparticles as Promising Oligonucleotide Delivery Systems to Mesenchymal Stem Cells. Int J Nanomedicine 2024; 19:9741-9755. [PMID: 39329032 PMCID: PMC11424689 DOI: 10.2147/ijn.s461167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Oligonucleotide (ON) therapy is a promising treatment for a wide range of complex genetic disorders, but inefficient intracellular ON delivery has hindered clinical translation. Hollow silica nanoparticles (HSN) hold potential as effective ON delivery vehicles since ON can be encapsulated in the hollow core in situ where they are protected from degradation by eg nucleases. However, HSN must be modified to allow degradation and subsequent (sub)cellular ON release. In this report, we investigated the use of ion and fluorescent dye co-doping in the HSN silica matrix to enable HSN degradability and in vitro visualization. Methods HSN were core encapsulated with ON, doped with Ca2+, Cu2+, Zn2+, Se2+ and Sr2+ ions and co-condensed with rhodamine b isothiocyanate (RITC) by a modified reverse microemulsion method. HSN were physiochemically characterized and their biological activity such as uptake and toxicity were evaluated in mesenchymal stem cells (hMSCs). Results We successfully doped HSN with RITC and Ca2+, Cu2+, Zn2+ and Sr2+ ions. We observed that doping HSN with Ca2+ and Sr2+ enhanced RITC incorporation while ON encapsulation in HSN increased Cu2+ and Zn2+ doping efficiency. Moreover, our dual-doped HSN demonstrated controlled ON release in the presence of intracellular mimicking levels of glutathione (GSH) and limited release in the absence of GSH over 14 days. HSN were biocompatible in hMSCs up to 300 µg/mL except for Cu2+ doped HSNs which were cytotoxic even at ~10 µg/mL. HSN uptake was influenced by the dopant ion, DNA encapsulation, and HSN concentration, where Zn-HSN showed the lowest and Sr-HSN and Se-HSND, the highest uptake in hMSCs. Conclusion We report a straightforward one-pot procedure to create ion and fluorescent dye co-doped HSN that can efficiently incorporate ON, as promising new gene vectors.
Collapse
Affiliation(s)
- Chloe Trayford
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| | - Dina M Ibrahim
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| | - Sabine van Rijt
- MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, MD, 6200, the Netherlands
| |
Collapse
|
2
|
Singh AK, Singh SP. Molecular scale insights from NMR studies of hybrid systems formed via doping silver QDs in 6CHBT liquid crystal: a quantitative investigation of their optoelectronic properties. LIQUID CRYSTALS 2023; 50:2019-2046. [DOI: 10.1080/02678292.2023.2227979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/18/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Archana Kumari Singh
- Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malviya University of Technology, Gorakhpur, India
| | - Satya Pal Singh
- Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malviya University of Technology, Gorakhpur, India
| |
Collapse
|
3
|
Fedorenko S, Stepanov A, Bochkova O, Kholin K, Nizameev I, Voloshina A, Tyapkina O, Samigullin D, Kleshnina S, Akhmadeev B, Romashchenko A, Zavjalov E, Amirov R, Mustafina A. Specific nanoarchitecture of silica nanoparticles codoped with the oppositely charged Mn 2+ and Ru 2+ complexes for dual paramagnetic-luminescent contrasting effects. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 49:102665. [PMID: 36822334 DOI: 10.1016/j.nano.2023.102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023]
Abstract
The silica nanoparticles (SNs) co-doped with paramagnetic ([Mn(HL)]n-,) and luminescent ([Ru(dipy)3]2+) complexes are represented. The specific distribution of [Mn(HL)]n- within the SNs allows to achieve about ten-fold enhancing in magnetic relaxivities in comparison with those of [Mn(HL)]n- in solutions. The leaching of [Mn(HL)]n- from the shell can be minimized through the co-doping of [Ru(dipy)3]2+ into the core of the SNs. The co-doped SNs exhibit colloid stability in aqueous solutions, including those modeling a blood serum. The surface of the co-doped SNs was also decorated by amino- and carboxy-groups. The cytotoxicity, hemoagglutination and hemolytic activities of the co-doped SNs are on the levels convenient for "in vivo" studies, although the amino-decorated SNs cause more noticeable agglutination and suppression of cell viability. The co-doped SNs being intravenously injected into mice allows to reveal their biodistribution in both ex vivo and in vivo conditions through confocal microscopy and magnetic resonance imaging correspondingly.
Collapse
Affiliation(s)
- Svetlana Fedorenko
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia.
| | - Alexey Stepanov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Olga Bochkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Kirill Kholin
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Irek Nizameev
- Kazan National Research Technological University, 68, K. Marx str., 420015 Kazan, Russia
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Oksana Tyapkina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia
| | - Dmitry Samigullin
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, 2/31 Lobachevski str., 420111 Kazan, Russia; Kazan National Research Technical University named after A.N. Tupolev - KAI, 10 K. Marx str., 420111 Kazan, Russia
| | - Sofiya Kleshnina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Bulat Akhmadeev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| | - Alexander Romashchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Evgenii Zavjalov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russian Federation
| | - Rustem Amirov
- Kazan (Volga region) Federal University, 18 Kremlyovskaya str., 420008 Kazan, Russia
| | - Asiya Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov str., 8, 420088 Kazan, Russia
| |
Collapse
|