1
|
Sinnott AD, Kelly A, Gabbett C, Munuera J, Doolan L, Möbius M, Ippolito S, Samorì P, Coleman JN, Cross GLW. Mechanical Properties of Conducting Printed Nanosheet Network Thin Films Under Uniaxial Compression. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306954. [PMID: 37812735 DOI: 10.1002/adma.202306954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/17/2023] [Indexed: 10/11/2023]
Abstract
Thin film networks of solution processed nanosheets show remarkable promise for use in a broad range of applications including strain sensors, energy storage, printed devices, textile electronics, and more. While it is known that their electronic properties rely heavily on their morphology, little is known of their mechanical nature, a glaring omission given the effect mechanical deformation has on the morphology of porous systems and the promise of mechanical post processing for tailored properties. Here, this work employs a recent advance in thin film mechanical testing called the Layer Compression Test to perform the first in situ analysis of printed nanosheet network compression. Due to the well-defined deformation geometry of this unique test, this work is able to explore the out-of-plane elastic, plastic, and creep deformation in these systems, extracting properties of elastic modulus, plastic yield, viscoelasticity, tensile failure and sheet bending vs. slippage under both out of plane uniaxial compression and tension. This work characterizes these for a range of networks of differing porosities and sheet sizes, for low and high compression, as well as the effect of chemical cross linking. This work explores graphene and MoS2 networks, from which the results can be extended to printed nanosheet networks as a whole.
Collapse
Affiliation(s)
- Aaron D Sinnott
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Adam Kelly
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Cian Gabbett
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Jose Munuera
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Luke Doolan
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Matthias Möbius
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Stefano Ippolito
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Paolo Samorì
- University of Strasbourg, CNRS, ISIS UMR 7006, 8 Alleé Gaspard Monge, Strasbourg, F-67000, France
| | - Jonathan N Coleman
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| | - Graham L W Cross
- Trinity College Dublin, CRANN, 43 Pearse St, Dublin 2, D02 W085, Ireland
| |
Collapse
|
2
|
Yu W, Yang Y, Wang Y, Hu L, Hao J, Xu L, Liu W. Versatile MXene Gels Assisted by Brief and Low-Strength Centrifugation. NANO-MICRO LETTERS 2024; 16:94. [PMID: 38252190 PMCID: PMC10803715 DOI: 10.1007/s40820-023-01302-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/25/2023] [Indexed: 01/23/2024]
Abstract
Due to the mutual repulsion between their hydrophilic surface terminations and the high surface energy facilitating their random restacking, 2D MXene nanosheets usually cannot self-assemble into 3D macroscopic gels with various applications in the absence of proper linking agents. In this work, a rapid spontaneous gelation of Ti3C2Tx MXene with a very low dispersion concentration of 0.5 mg mL-1 into multifunctional architectures under moderate centrifugation is illustrated. The as-prepared MXene gels exhibit reconfigurable internal structures and tunable rheological, tribological, electrochemical, infrared-emissive and photothermal-conversion properties based on the pH-induced changes in the surface chemistry of Ti3C2Tx nanosheets. By adopting a gel with optimized pH value, high lubrication, exceptional specific capacitances (~ 635 and ~ 408 F g-1 at 5 and 100 mV s-1, respectively), long-term capacitance retention (~ 96.7% after 10,000 cycles) and high-precision screen- or extrusion-printing into different high-resolution anticounterfeiting patterns can be achieved, thus displaying extensive potential applications in the fields of semi-solid lubrication, controllable devices, supercapacitors, information encryption and infrared camouflaging.
Collapse
Affiliation(s)
- Weiyan Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yi Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Yunjing Wang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Lulin Hu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| | - Jingcheng Hao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lu Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai, 264006, People's Republic of China
| |
Collapse
|