1
|
Liu Y, Peng X, Zhu L, Jiang R, Liu J, Chen C. Liquid-Assisted Bionic Conical Needle for In-Air and In-Oil-Water Droplet Ultrafast Unidirectional Transportation and Efficient Fog Harvesting. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59920-59930. [PMID: 38100412 DOI: 10.1021/acsami.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Learning from nature, many bionic materials and surfaces have been developed for the directional transportation of water and fog collection. However, current research mainly focuses on the self-transportation behavior of droplets in air-phase environments, rarely concerning underoil environments. Herein, in this work, a liquid-assisted bionic copper needle was fabricated for the rapid self-transportation of water droplets in air and oil environments. The water droplet can be spontaneously transported on the as-prepared bionic copper needle from the tip to the base. More importantly, the water-prewetted bionic copper needle can achieve the ultrafast unidirectional transportation of a water droplet in an oil environment, showing a maximum transport velocity of 76.2 mm/s and a transport distance over 33 mm, which were ten times higher than those reported in the previous research. Additionally, the droplet transport mechanism was revealed. The effects of the apex angle and tilt angle of the as-prepared bionic needle and droplet volume on the self-transportation behavior of water droplets were systematically investigated. The results indicated that the transport velocity of the water droplet decreased with the increase of the apex angle of the conical needle, while it increased with the increase of the droplet volume and needle tilt angle. Furthermore, the as-prepared bionic copper needle exhibited excellent fog collection performance with a single copper needle fog collecting efficiency of up to 2220 mg/h, which was 9.7 times that of the original copper needle. In summary, this work provides a simple and novel method to fabricate bionic copper needles for the directional self-transportation of water droplets in air-phase and oil-phase environments as well as efficient fog collection. It shows great application potential in the fields of microfluidics, desalination, and freshwater collection.
Collapse
Affiliation(s)
- Yangkai Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Xuqiao Peng
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Linfeng Zhu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Ruisong Jiang
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Jian Liu
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Chaolang Chen
- School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
- National United Engineering Laboratory for Advanced Bearing Tribology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
2
|
Tang C, Zhu Y, Bai H, Li G, Liu J, Wu W, Yang Y, Xuan S, Yin H, Chen Z, Lai L, Song Y, Cao M, Qiu B. Spontaneous Separation of Immiscible Organic Droplets on Asymmetric Wedge Channels with Hierarchical Microchannels. ACS APPLIED MATERIALS & INTERFACES 2023; 15:49762-49773. [PMID: 37843979 DOI: 10.1021/acsami.3c10211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Spontaneous separation of immiscible organic droplets has substantial research implications for environmental protection and resource regeneration. Compared to the widely explored separation of oil-water mixtures, there are fewer reports on separating mixed organic droplets on open surfaces due to the low surface tension differences. Efficient separation of mixed organic liquids by exploiting the rapid spontaneous transport of droplets on open surfaces remains a challenge. Here, through the fusion of inspiration from the fast droplet transport capability of Sarracenia trichome and the asymmetric wedge channel structure of shorebird beaks, this work proposes a spine with hierarchical microchannels and wedge channels (SHMW). Due to the synergistic effect of capillary force and asymmetric Laplace force, the SHMW can rapidly separate mixed organic droplets into two pure phases without requiring additional energy. In particular, the self-spreading of the oil solution on the open channel surface is utilized to amplify the surface energy difference between two droplets, and SHMW achieves the pickup of oil droplets floating on the surface of the organic solution. The maximum separation efficiency on 3-SHMW can reach 99.63%, and it can also realize the antigravity separation of mixed organic droplets with a surface tension difference as low as 0.87 mN·m-1. Furthermore, SHMW performs controllable separation, oil droplet pickup, and continuous separation and collection of mixed organic droplets. It is expected that this cooperative structure composed of hierarchical microchannels and wedge channels will be realized in resource recovery or chemical reactions in industrial production processes.
Collapse
Affiliation(s)
- Chengning Tang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuying Zhu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| | - Haoyu Bai
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Guoqiang Li
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Jiasong Liu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Weiming Wu
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yi Yang
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Sensen Xuan
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Huan Yin
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Zuqiao Chen
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Lin Lai
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Yuegan Song
- School of Manufacture Science and Engineering, Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, P. R. China
| | - Moyuan Cao
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China
| | - Bensheng Qiu
- Center for Biomedical Imaging, University of Science and Technology of China, Hefei 230027, Anhui, P. R. China
| |
Collapse
|
3
|
Yang Y, Liu D, Wang Q, Mahmood A, Lin M. Unveiling the Interactions between Water Molecule Clusters and Conical Structures via Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13028-13037. [PMID: 37671509 DOI: 10.1021/acs.langmuir.3c01228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Water scarcity presents a pressing global challenge, necessitating innovative solutions, such as the collection of water from the air using conical structures. However, current research primarily focuses on mist collection rather than on nanoscale clusters of water molecules. Under standard atmospheric conditions, water vapor predominantly exists as imperceptible clusters. Therefore, it is crucial to investigate the interactions between these water molecule clusters and conical structures, particularly regarding whether the conical shape induces Laplace pressure difference on the adhering cluster formations. To gain deeper insights and determine optimal droplet collection structures, we conducted molecular dynamics simulations to investigate interactions between water molecule clusters and conical structures. Our investigations focused on studying the interactions between conical structures and water molecule clusters with varying densities, as well as the impact of surface energies on the collection of water by these conical structures. Notably, our simulations unveiled the significant roles played by van der Waals forces and Laplace pressure in the process of collecting water molecule clusters. Furthermore, our simulations revealed that Janus conical structures, featuring two distinct surface energy regions, played a crucial role in promoting the aggregation of water molecules, resulting in the formation of larger droplets. This aggregation was driven by surface tension gradients, which arise from the contrasting wetting properties in different regions of the Janus structure. As a consequence, under the influence of gravitational forces, these larger droplets could eventually detach from the structure. Through the combined effects of surface tension gradients and gravitational forces, Janus conical structures offer a promising avenue for enhancing the collection efficiency of water from the air. Our research sheds light on the fundamental mechanisms governing water molecule cluster-based water collection and provides valuable insights for the design of more efficient and effective water collection systems.
Collapse
Affiliation(s)
- Yingying Yang
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Dong Liu
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| | - Qiuyan Wang
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Awais Mahmood
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Meijia Lin
- College of Physics and Electronic Information Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
4
|
Zhang J, Peng K, Xu ZK, Xiong Y, Liu J, Cai C, Huang X. A comprehensive review on the behavior and evolution of oil droplets during oil/water separation by membranes. Adv Colloid Interface Sci 2023; 319:102971. [PMID: 37562248 DOI: 10.1016/j.cis.2023.102971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/01/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023]
Abstract
Membrane separation technology has significant advantages for treating oil-in-water emulsions. Understanding the evolution of oil droplets could reveal the interfacial and colloidal interactions, facilitate the design of advanced membranes, and improve the separation performances. This review on the characteristic behavior and evolution of oil droplets focuses on the advanced analytical techniques, and the subsequent fouling as well as demulsification effects during membrane separation. A detailed introduction is provided on microscopic observations and numerical simulations of the dynamic evolution of oil droplets, featuring real-time in-situ visualization and accurate reconstruction, respectively. Characteristic behaviors of these oil droplets include attachment, pinning, wetting, spreading, blockage, intrusion, coalescence, and detachment, which have been quantified by specific proposed parameters and criteria. The fouling process can be evaluated using Hermia and resistance models. The related adhesion force and intrusion pressure as well as droplet-droplet/membrane interfacial interactions can be accurately quantified using various force analysis methods and advanced force measurement techniques. It is encouraging to note that oil coalescence has been achieved through various effects such as electrostatic interactions, mechanical actions, Laplace pressure/surface free energy gradients, and synergistic effects on functional membranes. When oil droplets become destabilized and coalesce into larger ones, the functional membranes can overcome the limitations of size-sieving effect to attain higher separation efficiency. This not only bypasses the trade-off between permeability and rejection, but also significantly reduces membrane fouling. Finally, the challenges and potential research directions in membrane separation are proposed. We hope this review will support the engineering of advanced materials for oil/water separation and research on interface science in general.
Collapse
Affiliation(s)
- Jialu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Kaiming Peng
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| | - Zhi-Kang Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, and Key Lab of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, No.38 Zheda Road, Hangzhou 310027, PR China
| | - Yongjiao Xiong
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Jia Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Chen Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China
| | - Xiangfeng Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China; Institute of Carbon Neutrality, Tongji University, No.1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|