1
|
Roh S, Yeo S, Bang RS, Han K, Velikov KP, Velev OD. Transparency-changing elastomers by controlling of the refractive index of liquid inclusions. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:425101. [PMID: 38981584 DOI: 10.1088/1361-648x/ad6110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Complex materials that change their optical properties in response to changes in environmental conditions can find applications in displays, smart windows, and optical sensors. Here a class of biphasic composites with stimuli-adaptive optical transmittance is introduced. The biphasic composites comprise aqueous droplets (a mixture of water, glycerol, and surfactant) embedded in an elastomeric matrix. The biphasic composites are tuned to be optically transparent through a careful match of the refractive indices between the aqueous droplets and the elastomeric matrix. We demonstrate that stimuli (e.g., salinity and temperature change) can trigger variations in the optical transmittance of the biphasic composite. The introduction of such transparency-changing soft matter with liquid inclusions offers a novel approach to designing advanced optical devices, optical sensors, and metamaterials.
Collapse
Affiliation(s)
- Sangchul Roh
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- School of Chemical Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, Republic of Korea
| | - Seonju Yeo
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Department of Bionic Machinery, KIMM Institute of AI Robot, Korea Institute of Machinery & Materials, Daejeon, Republic of Korea
| | - Rachel S Bang
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Koohee Han
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Department of Chemical Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Krassimir P Velikov
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
- Unilever Innovation Centre Wageningen, Bronland 14, 6708 WH Wageningen, The Netherlands
- Institute of Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, Utrecht, 3584 CC, The Netherlands
| | - Orlin D Velev
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States of America
| |
Collapse
|
2
|
Suñé M, Arratia C, Bonfils AF, Vella D, Wettlaufer JS. Wrinkling composite sheets. SOFT MATTER 2023; 19:8729-8743. [PMID: 37929692 DOI: 10.1039/d3sm00430a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
We examine the buckling shape and critical compression of confined inhomogeneous composite sheets lying on a liquid foundation. The buckling modes are controlled by the bending stiffness of the sheet, the density of the substrate, and the size and the spatially dependent elastic coefficients of the sheet. We solve the beam equation describing the mechanical equilibrium of a sheet when its bending stiffness varies parallel to the direction of confinement. The case of a homogeneous bending stiffness exhibits a degeneracy of wrinkled states for certain lengths of the confined sheet; we explain this degeneracy using an asymptotic analysis valid for long sheets, and show that it corresponds to the switching of the sheet between symmetric and antisymmetric buckling modes. This degeneracy disappears for spatially dependent elastic coefficients. Medium length sheets buckle similarly to their homogeneous counterparts, whereas the wrinkled states in large length sheets concentrate the bending energy towards the soft regions of the sheet.
Collapse
Affiliation(s)
- Marc Suñé
- Nordita, Stockholm University and KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden.
| | - Cristóbal Arratia
- Nordita, Stockholm University and KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden.
| | - A F Bonfils
- Nordita, Stockholm University and KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden.
| | - Dominic Vella
- Mathematical Institute, University of Oxford, Woodstock Rd, Oxford, OX2 6GG, UK.
| | - J S Wettlaufer
- Nordita, Stockholm University and KTH Royal Institute of Technology, Hannes Alfvéns väg 12, SE-106 91 Stockholm, Sweden.
- Yale University, New Haven, Connecticut 06520, USA.
| |
Collapse
|
3
|
Mensah B, Oduro E. Preparation and characterization of hydrophilic and water‐swellable elastomeric nanocomposites. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Bismark Mensah
- Department of Materials Science and Engineering, CBAS University of Ghana Legon Ghana
| | - Emmanuel Oduro
- Department of Materials Science and Engineering, CBAS University of Ghana Legon Ghana
| |
Collapse
|