1
|
Lohrmann C, Holm C, Datta SS. Influence of bacterial swimming and hydrodynamics on attachment of phages. SOFT MATTER 2024; 20:4795-4805. [PMID: 38847805 DOI: 10.1039/d4sm00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Bacteriophages ("phages") are viruses that infect bacteria. Since they do not actively self-propel, phages rely on thermal diffusion to find target cells-but can also be advected by fluid flows, such as those generated by motile bacteria themselves in bulk fluids. How does the flow field generated by a swimming bacterium influence how it encounters phages? Here, we address this question using coupled molecular dynamics and lattice Boltzmann simulations of flagellated bacteria swimming through a bulk fluid containing uniformly-dispersed phages. We find that while swimming increases the rate at which phages attach to both the cell body and flagellar propeller, hydrodynamic interactions strongly suppress this increase at the cell body, but conversely enhance this increase at the flagellar bundle. Our results highlight the pivotal influence of hydrodynamics on the interactions between bacteria and phages, as well as other diffusible species, in microbial environments.
Collapse
Affiliation(s)
- Christoph Lohrmann
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany.
| | - Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
2
|
Khandoori R, Mondal K, Ghosh P. Resource limitation and population fluctuation drive spatiotemporal order in microbial communities. SOFT MATTER 2024; 20:3823-3835. [PMID: 38647378 DOI: 10.1039/d4sm00066h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Microbial communities display complex spatiotemporal behaviors leading to spatially-structured and ordered organization driven by species interactions and environmental factors. Resource availability plays a pivotal role in shaping the dynamics of bacterial colonies. In this study, we delve into the intricate interplay between resource limitation and the emergent properties of a growing colony of two visually distinct bacterial strains having similar growth and mechanical properties. Employing an agent-based modeling and computer simulations, we analyze the resource-driven effect on segregation and sectoring, cell length regulation and nematic ordering within a growing colony. We introduce a dimensionless parameter referred to as the active layer thickness, derived from nutrient diffusion equations, indicating effective population participation due to local resource availability. Our results reveal that lower values of active layer thickness arising from decreased resource abundance lead to rougher colony fronts, fostering heightened population fluctuations within the colony and faster spatial genetic diversity loss. Our temporal analyses unveil the dynamics of mean cell length and fluctuations, showcasing how initial disturbances evolve as colonies are exposed to nutrients and subsequently settle. Furthermore, examining microscopic details, we find that lower resource levels yield diverse cell lengths and enhanced nematic ordering, driven by the increased prevalence of longer rod-shaped cells. Our investigation sheds light on the multifaceted relationship between resource constraints and bacterial colony dynamics, revealing insights into their spatiotemporal organization.
Collapse
Affiliation(s)
- Rohit Khandoori
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
| | - Kaustav Mondal
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| | - Pushpita Ghosh
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India.
- Center for High-Performance Computing, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
3
|
Silva DPF, Coelho RCV, Pagonabarraga I, Succi S, Telo da Gama MM, Araújo NAM. Lattice Boltzmann simulation of deformable fluid-filled bodies: progress and perspectives. SOFT MATTER 2024; 20:2419-2441. [PMID: 38420837 PMCID: PMC10933750 DOI: 10.1039/d3sm01648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
With the rapid development of studies involving droplet microfluidics, drug delivery, cell detection, and microparticle synthesis, among others, many scientists have invested significant efforts to model the flow of these fluid-filled bodies. Motivated by the intricate coupling between hydrodynamics and the interactions of fluid-filled bodies, several methods have been developed. The objective of this review is to present a compact foundation of the methods used in the literature in the context of lattice Boltzmann methods. For hydrodynamics, we focus on the lattice Boltzmann method due to its specific ability to treat time- and spatial-dependent boundary conditions and to incorporate new physical models in a computationally efficient way. We split the existing methods into two groups with regard to the interfacial boundary: fluid-structure and fluid-fluid methods. The fluid-structure methods are characterised by the coupling between fluid dynamics and mechanics of the flowing body, often used in applications involving membranes and similar flexible solid boundaries. We further divide fluid-structure-based methods into two subcategories, those which treat the fluid-structure boundary as a continuum medium and those that treat it as a discrete collection of individual springs and particles. Next, we discuss the fluid-fluid methods, particularly useful for the simulations of fluid-fluid interfaces. We focus on models for immiscible droplets and their interaction in a suspending fluid and describe benchmark tests to validate the models for fluid-filled bodies.
Collapse
Affiliation(s)
- Danilo P F Silva
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Rodrigo C V Coelho
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Ignacio Pagonabarraga
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Carrer de Martí Franqués 1, 08028 Barcelona, Spain
- Universitat de Barcelona Institute of Complex Systems (UBICS), Universitat de Barcelona, 08028 Barcelona, Spain
| | - Sauro Succi
- Center for Life Nano Science at La Sapienza, Istituto Italiano di Tecnologia, 295 Viale Regina Elena, I/00161 Roma, Italy
- Harvard Institute for Applied Computational Science, Cambridge, MA 02138, USA
| | - Margarida M Telo da Gama
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal.
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016 Lisboa, Portugal
| |
Collapse
|
4
|
Wang W, Ren H, Zhang R. Symmetry Breaking of Self-Propelled Topological Defects in Thin-Film Active Chiral Nematics. PHYSICAL REVIEW LETTERS 2024; 132:038301. [PMID: 38307071 DOI: 10.1103/physrevlett.132.038301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/09/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Active nematics represent a range of dense active matter systems which can engender spontaneous flows and self-propelled topological defects. Two-dimensional (2D) active nematic theory and simulation have been successful in explaining many quasi-2D experiments in which self-propelled +1/2 defects are observed to move along their symmetry axis. However, many active liquid crystals are essentially chiral nematic, but their twist mode becomes irrelevant under the 2D assumption. Here, we use theory and simulation to examine a three-dimensional active chiral nematic confined to a thin film, thus forming a quasi-2D system. We predict that the self-propelled +1/2 disclination in a curved thin film can break its mirror symmetry by moving circularly. Our prediction is confirmed by hydrodynamic simulations of thin spherical-shell and thin cylindrical-shell systems. In the spherical-shell confinement, the four emerged +1/2 disclinations exhibit rich dynamics as a function of activity and chirality. As such, we have proposed a new symmetry-breaking scenario in which self-propelled defects in quasi-2D active nematics can acquire an active angular velocity, greatly enriching their dynamics for finer control and emerging applications.
Collapse
Affiliation(s)
- Weiqiang Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Haijie Ren
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| | - Rui Zhang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR
| |
Collapse
|
5
|
Caballero F, Marchetti MC. Activity-Suppressed Phase Separation. PHYSICAL REVIEW LETTERS 2022; 129:268002. [PMID: 36608178 DOI: 10.1103/physrevlett.129.268002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
We use a continuum model to examine the effect of activity on a phase-separating mixture of an extensile active nematic and a passive fluid. We highlight the distinct role of (i) previously considered interfacial active stresses and (ii) bulk active stresses that couple to liquid crystalline degrees of freedom. Interfacial active stresses can arrest phase separation, as previously demonstrated. Bulk extensile active stresses can additionally strongly suppress phase separation by sustained self-stirring of the fluid, substantially reducing the size of the coexistence region in the temperature-concentration plane relative to that of the passive system. The phase-separated state is a dynamical emulsion of continuously splitting and merging droplets, as suggested by recent experiments. Using scaling analysis and simulations, we identify various regimes for the dependence of droplet size on activity. These results can provide a criterion for identifying the mechanisms responsible for arresting phase separation in experiments.
Collapse
Affiliation(s)
- Fernando Caballero
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| | - M Cristina Marchetti
- Department of Physics, University of California Santa Barbara, Santa Barbara, CA 93106
| |
Collapse
|