1
|
Kamei R, Hosomi T, Kanai M, Kanao E, Liu J, Takahashi T, Li W, Tanaka W, Nagashima K, Nakano K, Otsuka K, Kubo T, Yanagida T. Rational Strategy for Space-Confined Atomic Layer Deposition. ACS APPLIED MATERIALS & INTERFACES 2023; 15:23931-23937. [PMID: 37155349 DOI: 10.1021/acsami.3c01443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atomic layer deposition (ALD) offers excellent controllability of spatial uniformity, film thickness at the Angstrom level, and film composition even for high-aspect-ratio nanostructured surfaces, which are rarely attainable by other conventional deposition methodologies. Although ALD has been successfully applied to various substrates under open-top circumstances, the applicability of ALD to confined spaces has been limited because of the inherent difficulty of supplying precursors into confined spaces. Here, we propose a rational methodology to apply ALD growths to confined spaces (meter-long microtubes with an aspect ratio of up to 10 000). The ALD system, which can generate differential pressures to confined spaces, was newly developed. By using this ALD system, it is possible to deposit TiOx layers onto the inner surface of capillary tubes with a length of 1000 mm and an inner diameter of 100 μm with spatial deposition uniformity. Furthermore, we show the superior thermal and chemical robustness of TiOx-coated capillary microtubes for molecular separations when compared to conventional molecule-coated capillary microtubes. Thus, the present rational strategy of space-confined ALD offers a useful approach to design the chemical and physical properties of the inner surfaces of various confined spaces.
Collapse
Affiliation(s)
- Ryoma Kamei
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Takuro Hosomi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Masaki Kanai
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| | - Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka 567-0085, Japan
| | - Jiangyang Liu
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Tsunaki Takahashi
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Wenjun Li
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Wataru Tanaka
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Kazuki Nagashima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- JST-PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Katsuya Nakano
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Koji Otsuka
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takuya Kubo
- Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Takeshi Yanagida
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasuga-Koen, Kasuga, Fukuoka, 816-8580, Japan
| |
Collapse
|