1
|
Viani A, Bernasconi D, Zárybnická L, Zontone F, Pavese A, Dallari F. Heterogeneous dynamics in aging phosphate-based geopolymer. J Chem Phys 2025; 162:024903. [PMID: 39783978 DOI: 10.1063/5.0239498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025] Open
Abstract
The time-evolution of dynamics as well as microstructure and mechanical response of phosphate-based geopolymers was probed using x-ray photon correlation spectroscopy and rheological tests. The analyzed relaxation processes in the freshly prepared geopolymer mixes evidenced a q-independent mode of the autocorrelation function, ascribed to density fluctuations of the already established molecular network, undergoing reconfiguration without significant mass transport. Upon curing, the detected motions are localized and depict a system evolving toward structural arrest dominated by slower hyperdiffusive dynamics, characterized by a compressed exponential regime, pointing to a structural relaxation process subjected to internal stresses, in a context of marked dynamical and structural heterogeneity. The system ages through a "densification" process producing declining small angle scattered intensity, as two finely intermixed gel-like reaction products, namely, one hydrated aluminophosphate and one hydrated silica, form a percolated network possessing surface fractal scaling of progressively shorter average correlation length. In this scenario, the nominal Al/P molar ratio of the mix, being an index of network-forming ability, is positively correlated with the dynamic viscosity and the overall kinetics, whereas the contrary occurs for the fraction of water.
Collapse
Affiliation(s)
- Alberto Viani
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Lucie Zárybnická
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic
| | | | | | - Francesco Dallari
- Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, Centre Telč, 58856 Telč, Czech Republic
| |
Collapse
|
2
|
Kamal MA, Brizioli M, Zinn T, Narayanan T, Cerbino R, Giavazzi F, Pal A. Dynamics of anisotropic colloidal systems: What to choose, DLS, DDM or XPCS? J Colloid Interface Sci 2024; 660:314-320. [PMID: 38244498 DOI: 10.1016/j.jcis.2023.12.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/22/2024]
Abstract
Investigation of the dynamics of colloids in bulk can be hindered by issues such as multiple scattering and sample opacity. These challenges are exacerbated when dealing with inorganic materials. In this study, we employed a model system of Akaganeite colloidal rods to assess three leading dynamics measurement techniques: 3D-(depolarized) dynamic light scattering (3D-(D)DLS), polarized-differential dynamic microscopy (P-DDM), and x-ray photon correlation spectroscopy (XPCS). Our analysis revealed that the translational and rotational diffusion coefficients captured by these methods show a remarkable alignment. Additionally, by examining the q-ranges and maximum volume fractions for each approach, we offer insights into the best technique for investigating the dynamics of anisotropic systems at the colloidal scale.
Collapse
Affiliation(s)
- Md Arif Kamal
- Division of Physical Chemistry, Department of Chemistry, Lund University, Lund, Sweden
| | - Matteo Brizioli
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Thomas Zinn
- ESRF-The European Synchrotron, Grenoble, France
| | | | | | - Fabio Giavazzi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Antara Pal
- Department of Physics, Stockholm University, Stockholm, Sweden; MAX IV Laboratory, Lund, Sweden.
| |
Collapse
|
3
|
Narayanan T. Recent advances in synchrotron scattering methods for probing the structure and dynamics of colloids. Adv Colloid Interface Sci 2024; 325:103114. [PMID: 38452431 DOI: 10.1016/j.cis.2024.103114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/09/2024]
Abstract
Recent progress in synchrotron based X-ray scattering methods applied to colloid science is reviewed. An important figure of merit of these techniques is that they enable in situ investigations of colloidal systems under the desired thermophysical and rheological conditions. An ensemble averaged simultaneous structural and dynamical information can be derived albeit in reciprocal space. Significant improvements in X-ray source brilliance and advances in detector technology have overcome some of the limitations in the past. Notably coherent X-ray scattering techniques have become more competitive and they provide complementary information to laboratory based real space methods. For a system with sufficient scattering contrast, size ranges from nm to several μm and time scales down to μs are now amenable to X-ray scattering investigations. A wide variety of sample environments can be combined with scattering experiments further enriching the science that could be pursued by means of advanced X-ray scattering instruments. Some of these recent progresses are illustrated via representative examples. To derive quantitative information from the scattering data, rigorous data analysis or modeling is required. Development of powerful computational tools including the use of artificial intelligence have become the emerging trend.
Collapse
|
5
|
Manna G, Zinn T, Sharpnack L, Narayanan T. Orientational ordering and assembly of silica-nickel Janus particles in a magnetic field. IUCRJ 2024; 11:109-119. [PMID: 38099813 PMCID: PMC10833383 DOI: 10.1107/s205225252301000x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/16/2023] [Indexed: 01/10/2024]
Abstract
The orientation ordering and assembly behavior of silica-nickel Janus particles in a static external magnetic field were probed by ultra small-angle X-ray scattering (USAXS). Even in a weak applied field, the net magnetic moments of the individual particles aligned in the direction of the field, as indicated by the anisotropy in the recorded USAXS patterns. X-ray photon correlation spectroscopy (XPCS) measurements on these suspensions revealed that the corresponding particle dynamics are primarily Brownian diffusion [Zinn, Sharpnack & Narayanan (2023). Soft Matter, 19, 2311-2318]. At higher fields, the magnetic forces led to chain-like configurations of particles, as indicated by an additional feature in the USAXS pattern. A theoretical framework is provided for the quantitative interpretation of the observed anisotropic scattering diagrams and the corresponding degree of orientation. No anisotropy was detected when the magnetic field was applied along the beam direction, which is also replicated by the model. The method presented here could be useful for the interpretation of oriented scattering patterns from a wide variety of particulate systems. The combination of USAXS and XPCS is a powerful approach for investigating asymmetric colloidal particles in external fields.
Collapse
Affiliation(s)
| | - Thomas Zinn
- ESRF – The European Synchrotron, 38043 Grenoble, France
| | | | | |
Collapse
|
6
|
Chèvremont W, Zinn T, Narayanan T. Improvement of ultra-small-angle XPCS with the Extremely Brilliant Source. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:65-76. [PMID: 37933847 PMCID: PMC10833426 DOI: 10.1107/s1600577523008627] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/01/2023] [Indexed: 11/08/2023]
Abstract
Recent technical developments and the performance of the X-ray photon correlation spectroscopy (XPCS) method over the ultra-small-angle range with the Extremely Brilliant Source (EBS) at the ESRF are described. With higher monochromatic coherent photon flux (∼1012 photons s-1) provided by the EBS and the availability of a fast pixel array detector (EIGER 500K detector operating at 23000 frames s-1), XPCS has become more competitive for probing faster dynamics in relatively dilute suspensions. One of the goals of the present development is to increase the user-friendliness of the method. This is achieved by means of a Python-based graphical user interface that enables online visualization and analysis of the processed data. The improved performance of XPCS on the Time-Resolved Ultra-Small-Angle X-ray Scattering instrument (ID02 beamline) is demonstrated using dilute model colloidal suspensions in several different applications.
Collapse
Affiliation(s)
- William Chèvremont
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | - Thomas Zinn
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, 38043 Grenoble, France
| | | |
Collapse
|
7
|
Pommella A, Griffiths P, Coativy G, Dalmas F, Ranoo S, Schmidt AM, Méchin F, Bernard J, Zinn T, Narayanan T, Meille S, Baeza GP. Fate of Magnetic Nanoparticles during Stimulated Healing of Thermoplastic Elastomers. ACS NANO 2023; 17:17394-17404. [PMID: 37578990 DOI: 10.1021/acsnano.3c05440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
We have investigated the heating mechanism in industrially relevant, multi-block copolymers filled with Fe nanoparticles and subjected to an oscillatory magnetic field that enables polymer healing in a contactless manner. While this procedure aims to extend the lifetime of a wide range of thermoplastic polymers, repeated or prolonged stimulus healing is likely to modify their structure, mechanics, and ability to heat, which must therefore be characterized in depth. In particular, our work sheds light on the physical origin of the secondary heating mechanism detected in soft systems subjected to magnetic hyperthermia and triggered by copolymer chain dissociation. In spite of earlier observations, the origin of this additional heating remained unclear. By using both static and dynamic X-ray scattering methods (small-angle X-ray scattering and X-ray photon correlation spectroscopy, respectively), we demonstrate that beyond magnetic hysteresis losses, the enormous drop of viscosity at the polymer melting temperature enables motion of nanoparticles that generates additional heat through friction. Additionally, we show that applying induction heating for a few minutes is found to magnetize the nanoparticles, which causes them to align in dipolar chains and leads to nonmonotonic translational dynamics. By extrapolating these observations to rotational dynamics and the corresponding amount of heat generated through friction, we not only clarify the origin of the secondary heating mechanism but also rationalize the presence of a possible temperature maximum observed during induction heating.
Collapse
Affiliation(s)
- Angelo Pommella
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Pablo Griffiths
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LGEF, EA682, Villeurbanne 69621, France
| | - Gildas Coativy
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LGEF, EA682, Villeurbanne 69621, France
| | - Florent Dalmas
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Surojit Ranoo
- Chemistry Department, Institute for Physical Chemistry, University of Cologne, Cologne 50939, Germany
| | - Annette M Schmidt
- Chemistry Department, Institute for Physical Chemistry, University of Cologne, Cologne 50939, Germany
| | - Françoise Méchin
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne Cédex F-69621, France
| | - Julien Bernard
- Université de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, Université Jean Monnet, CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne Cédex F-69621, France
| | - Thomas Zinn
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Theyencheri Narayanan
- ESRF, The European Synchrotron, 71 Avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Sylvain Meille
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| | - Guilhem P Baeza
- Univ Lyon, INSA Lyon, Université Claude Bernard Lyon 1, CNRS, MATEIS, UMR 5510, Villeurbanne 69621, France
| |
Collapse
|