1
|
Douglas-Green SA, Aleman JA, Hammond PT. Electrophoresis-Based Approach for Characterizing Dendrimer-Protein Interactions: A Proof-of-Concept Study. ACS Biomater Sci Eng 2024; 10:3747-3758. [PMID: 38753577 DOI: 10.1021/acsbiomaterials.3c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Improving the clinical translation of nanomedicine requires better knowledge about how nanoparticles interact with biological environments. As researchers are recognizing the importance of understanding the protein corona and characterizing how nanocarriers respond in biological systems, new tools and techniques are needed to analyze nanocarrier-protein interactions, especially for smaller size (<10 nm) nanoparticles like polyamidoamine (PAMAM) dendrimers. Here, we developed a streamlined, semiquantitative approach to assess dendrimer-protein interactions using a nondenaturing electrophoresis technique combined with mass spectrometry. With this protocol, we detect fluorescently tagged dendrimers and proteins simultaneously, enabling us to analyze when dendrimers migrate with proteins. We found that PAMAM dendrimers mostly interact with complement proteins, particularly C3 and C4a, which aligns with previously published data, verifying that our approach can be used to isolate and identify dendrimer-protein interactions.
Collapse
Affiliation(s)
- Simone A Douglas-Green
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, Massachusetts 02142, United States
| | - Juan A Aleman
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
| | - Paula T Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, United States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main St, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
2
|
Custódio B, Carneiro P, Marques J, Leiro V, Valentim AM, Sousa M, Santos SD, Bessa J, Pêgo AP. Biological Response Following the Systemic Injection of PEG-PAMAM-Rhodamine Conjugates in Zebrafish. Pharmaceutics 2024; 16:608. [PMID: 38794270 PMCID: PMC11125904 DOI: 10.3390/pharmaceutics16050608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/15/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous therapeutic and diagnostic approaches used within a clinical setting depend on the administration of compounds via systemic delivery. Biomaterials at the nanometer scale, as dendrimers, act as delivery systems by improving cargo bioavailability, circulation time, and the targeting of specific tissues. Although evaluating the efficacy of pharmacological agents based on nanobiomaterials is crucial, conducting toxicological assessments of biomaterials is essential for advancing clinical translation. Here, a zebrafish larvae model was explored to assess the biocompatibility of poly(amido amine) (PAMAM), one of the most exploited dendrimers for drug delivery. We report the impact of a systemic injection of polyethylene glycol (PEG)-modified G4 PAMAM conjugated with rhodamine (Rho) as a mimetic drug (PEG-PAMAM-Rho) on survival, animal development, inflammation, and neurotoxicity. A concentration- and time-dependent effect was observed on mortality, developmental morphology, and innate immune system activation (macrophages). Significant effects in toxicological indicators were reported in the highest tested concentration (50 mg/mL PEG-PAMAM-Rho) as early as 48 h post-injection. Additionally, a lower concentration of PEG-PAMAM-Rho (5 mg/mL) was found to be safe and subsequently tested for neurotoxicity through behavioral assays. In accordance, no significative signs of toxicity were detected. In conclusion, the dose response of the animal was assessed, and the safe dosage for future use in theragnostics was defined. Additionally, new methodologies were established that can be adapted to further studies in toxicology using other nanosystems for systemic delivery.
Collapse
Affiliation(s)
- Beatriz Custódio
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Patrícia Carneiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Joana Marques
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Victoria Leiro
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana M. Valentim
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Mafalda Sousa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
| | - Sofia D. Santos
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - José Bessa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Ana P. Pêgo
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal (S.D.S.)
- INEB—Instituto Nacional de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen 208, 4200-135 Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, R. Jorge de Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
3
|
DeJulius CR, Walton BL, Colazo JM, d'Arcy R, Francini N, Brunger JM, Duvall CL. Engineering approaches for RNA-based and cell-based osteoarthritis therapies. Nat Rev Rheumatol 2024; 20:81-100. [PMID: 38253889 PMCID: PMC11129836 DOI: 10.1038/s41584-023-01067-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2023] [Indexed: 01/24/2024]
Abstract
Osteoarthritis (OA) is a chronic, debilitating disease that substantially impairs the quality of life of affected individuals. The underlying mechanisms of OA are diverse and are becoming increasingly understood at the systemic, tissue, cellular and gene levels. However, the pharmacological therapies available remain limited, owing to drug delivery barriers, and consist mainly of broadly immunosuppressive regimens, such as corticosteroids, that provide only short-term palliative benefits and do not alter disease progression. Engineered RNA-based and cell-based therapies developed with synthetic chemistry and biology tools provide promise for future OA treatments with durable, efficacious mechanisms of action that can specifically target the underlying drivers of pathology. This Review highlights emerging classes of RNA-based technologies that hold potential for OA therapies, including small interfering RNA for gene silencing, microRNA and anti-microRNA for multi-gene regulation, mRNA for gene supplementation, and RNA-guided gene-editing platforms such as CRISPR-Cas9. Various cell-engineering strategies are also examined that potentiate disease-dependent, spatiotemporally regulated production of therapeutic molecules, and a conceptual framework is presented for their application as OA treatments. In summary, this Review highlights modern genetic medicines that have been clinically approved for other diseases, in addition to emerging genome and cellular engineering approaches, with the goal of emphasizing their potential as transformative OA treatments.
Collapse
Affiliation(s)
- Carlisle R DeJulius
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bonnie L Walton
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Juan M Colazo
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Richard d'Arcy
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Nora Francini
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Brunger
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|