1
|
Chen L, He Y, Lan J, Li Z, Gu D, Nie W, Zhang T, Ding Y. Advancements in nano drug delivery system for liver cancer therapy based on mitochondria-targeting. Biomed Pharmacother 2024; 180:117520. [PMID: 39395257 DOI: 10.1016/j.biopha.2024.117520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024] Open
Abstract
Based on poor efficacy and non-specific toxic side effects of conventional drug therapy for liver cancer, nano-based drug delivery system (NDDS) offers the advantage of drug targeting delivery. Subcellular targeting of nanomedicines on this basis enables more precise and effective termination of tumor cells. Mitochondria, as the crucial cell powerhouse, possesses distinctive physical and chemical properties in hepatoma cells different from that in hepatic cells, and controls apoptosis, tumor metastasis, and cellular drug resistance in hepatoma cells through metabolism and dynamics, which serves as a good choice for drug targeting delivery. Thus, mitochondria-targeting NDDS have become a recent research focus, showcasing the design of cationic nanoparticles, metal nanoparticles, mitochondrial peptide modification and so on. Although many studies have shown good results regarding anti-tumor efficacy, it is a long way to go before the successful translation of clinical application. Based on these, we summarized the specificity and importance of mitochondria in hepatoma cells, and reviewed the current mitochondria-targeting NDDS for liver cancer therapy, aiming to provide a better understanding for current development process, strengths and weaknesses of mitochondria-targeting NDDS as well as informing subsequent improvements and developments.
Collapse
Affiliation(s)
- Lixia Chen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yitian He
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinshuai Lan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhe Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghao Gu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wenlong Nie
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Yue Ding
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; The MOE Innovation Centre for Basic Medicine Research on Qi-Blood TCM Theories, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Tevet S, Amir RJ. Hydrophobicity as a tool for programming sequential mesophase transitions of enzyme-responsive polymeric amphiphiles. J Mater Chem B 2024. [PMID: 39385664 DOI: 10.1039/d4tb01587h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The ability of polymeric assemblies to undergo programmable cascades of mesophase transitions is prevalent in many systems in nature, where structural and functional features are tightly bound to maximize activity. In this study, we have examined the ability to program the mesophase transition rates of co-assembled enzyme-responsive polymeric micelles, through fine adjustments of the hydrophobicity of their amphiphilic components. We have utilized the different reactivities of di- and tri-block amphiphiles toward enzymatic degradation as a tool for programming formulations to undergo sequential enzymatically induced transitions from micelles to hydrogels and finally to dissolved polymers. By varying the aliphatic end-groups of PEG-dendron di-block and tri-block amphiphiles, we could demonstrate the remarkable impact of minor modifications to the di-block amphiphiles' structure and hydrophobicity on the transition rates between the different mesophases, ranging from a few hours to a week. Additionally, the study reveals how altering the relative hydrophobicity of its amphiphilic components influences the formulation ratio and enzymatic selectivity, as well as the stability and degradation rate of the resulting hydrogels. The findings underscore the importance of molecular architecture and hydrophobicity as key parameters in the design of programmable enzyme-responsive polymeric assemblies, offering insights into the ability to precisely control multi-step mesophase transitions for tailored functionality.
Collapse
Affiliation(s)
- Shahar Tevet
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
| | - Roey J Amir
- Department of Organic Chemistry, School of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, Israel.
- The Center for Nanoscience and Nanotechnology, Tel-Aviv University, Tel-Aviv, Israel
- ADAMA Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel-Aviv, Israel
- The Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
3
|
Wang H, Bai S, Gu G, Zhang C, Wang Y. Chemical Reaction Steers Spatiotemporal Self-Assembly of Supramolecular Hydrogels. Chempluschem 2024; 89:e202400396. [PMID: 38923325 DOI: 10.1002/cplu.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Supramolecular structures are widespread in living system, which are usually spatiotemporally regulated by sophisticated metabolic processes to enable vital biological functions. Inspired by living system, tremendous efforts have been made to realize spatiotemporal control over the self-assembly of supramolecular materials in synthetic scenario by coupling chemical reaction with molecular self-assembly process. In this review, we focused on the works related to supramolecular hydrogels that are regulated in space and time using chemical reaction. Firstly, we summarized how spatially controlled self-assembly of supramolecular hydrogels can be achieved via chemical reaction-instructed self-assembly, and the application of such a self-assembly methodology in biotherapy was discussed as well. Second, we reviewed dynamic supramolecular hydrogels dictated by chemical reaction networks that can evolve their structures and properties against time. Third, we discussed the recent progresses in the control of the self-assembly of supramolecular hydrogels in both space and time though a reaction-diffusion-coupled self-assembly approach. Finally, we provided a perspective on the further development of spatiotemporally controlled supramolecular hydrogels using chemical reaction in the future.
Collapse
Affiliation(s)
- Hucheng Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengyu Bai
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guanyao Gu
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunyu Zhang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yiming Wang
- School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Shanghai Key Laboratory for Intelligent Sensing and Detection Technology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Wu C, Jiang P, Su W, Yan Y. Alkaline Phosphatase-Instructed Peptide Assemblies for Imaging and Therapeutic Applications. Biomacromolecules 2024; 25:5609-5629. [PMID: 39185628 DOI: 10.1021/acs.biomac.4c00795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Self-assembly, a powerful strategy for constructing highly stable and well-ordered supramolecular structures, widely exists in nature and in living systems. Peptides are frequently used as building blocks in the self-assembly process due to their advantageous characteristics, such as ease of synthesis, tunable mechanical stability, good biosafety, and biodegradability. Among the initiators for peptide self-assembly, enzymes are excellent candidates for guiding this process under mild reaction conditions. As a crucial and commonly used biomarker, alkaline phosphatase (ALP) cleaves phosphate groups, triggering a hydrophilicity-to-hydrophobicity transformation that induces peptide self-assembly. In recent years, ALP-instructed peptide self-assembly has made breakthroughs in biological imaging and therapy, inspiring the development of self-assembly biomaterials for diagnosis and therapeutics. In this review, we highlight the most recent advancements in ALP-instructed peptide assemblies and provide perspectives on their potential impact. Finally, we briefly discuss the ongoing challenges for future research in this field.
Collapse
Affiliation(s)
- Chengfan Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Pingge Jiang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wen Su
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
5
|
Xiao X, Huang J. Enzyme-Responsive Supramolecular Self-Assembly in Small Amphiphiles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39018035 DOI: 10.1021/acs.langmuir.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Enzyme-responsive molecular assemblies have recently made remarkable progress, owing to their widespread applications. As a class of catalysts with high specificity and efficiency, enzymes play a critical role in producing new molecules and maintaining metabolic stability in living organisms. Therefore, the study of enzyme-responsive assembly aids in understanding the origin of life and the physiological processes occurring within living bodies, contributing to further advancements across various disciplines. In this Review, we summarize three kinds of enzyme-responsive assembly systems in amphiphiles: enzyme-triggered assembly, disassembly, and structural transformation. Furthermore, motivated by the fact that biological macromolecules and complex structures all originated with small molecules, our focus lies on the small amphiphiles (e.g., peptides, surfactants, fluorescent molecules, and drug molecules). We also provide an outlook on the potential of enzyme-responsive assembly systems for biomimetic development and hope this Review will attract more attention to this emerging research branch at the intersection of assembly chemistry and biological science.
Collapse
Affiliation(s)
- Xiao Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
6
|
Carney E, Ghasem Zadeh Moslabeh F, Kang SY, Bunnell BA, Lee MY, Habibi N. Self-assembling peptides induced by eyes absent enzyme to boost the efficacy of doxorubicin therapy in drug-resistant breast cancer cells. Heliyon 2024; 10:e33629. [PMID: 39071664 PMCID: PMC11283099 DOI: 10.1016/j.heliyon.2024.e33629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024] Open
Abstract
Enzyme-induced self-assembly (EISA) is a recently developed nanotechnology technique in which small molecules are induced by cellular enzymes self-assembling into nanostructures inside cancer cells. This technique can boost the efficacy of chemotherapy drugs by avoiding drug efflux, inhibiting the cells' DNA repair mechanisms, and targeting the mitochondria. In this work, we study the self-assembly of a short peptide and its fluorescence analogue induced by Eyes absent (EYA) tyrosine phosphatases to boost the efficacy of doxorubicin (DOX) therapy in drug-resistant types of breast cancer cells, MDA-MB-231 and MCF-7. The peptides Fmoc-FF-YP and NBD-FF-YP were synthesized with the solid-phase peptide synthesis (SPPS) method and analyzed with HPLC and MALDI-TOF. Dynamic light scattering was used to determine the size distribution of peptides exposed to the EYA enzyme in vitro. The presence of EYA enzymes in breast cancer cells was confirmed using the western blotting assay. The intracellular location of the peptide self-assembly was studied by imaging fluorescence NBD-tagged peptides. The efficacy of the peptide alone and with DOX was determined against MCF-7 and MDA-MB-231 using MTT and LIVE-DEAD assays. Nucleus and cytoplasm F-actin (Phalloidin) staining was used to determine cell morphology changes in response to the combination therapy of peptides/DOX. At an optimal concentration, the peptides are not toxic to the cells; however, they boost the efficacy of DOX against drug-resistant breast cancer cells. We used state-of-the-art computer-aided techniques to predict the molecular structure of peptides and their interactions with EYA. This study demonstrates an approach for incorporating non-cytotoxic components into DOX combination therapy, thereby avoiding increased systemic burden or adverse effects.
Collapse
Affiliation(s)
- Emily Carney
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | | | - Soo-Yeon Kang
- Bioprinting Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | - Bruce A. Bunnell
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, United States
| | - Moo-Yeal Lee
- Bioprinting Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| | - Neda Habibi
- Nanomedicine Lab, Department of Biomedical Engineering, University of North Texas, Texas, United States
| |
Collapse
|
7
|
Rathee P, Edelstein-Pardo N, Koren G, Beck R, Amir RJ. Cascade Mesophase Transitions of Multi-enzyme Responsive Polymeric Formulations. Biomacromolecules 2024; 25:3607-3619. [PMID: 38776179 PMCID: PMC11170936 DOI: 10.1021/acs.biomac.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024]
Abstract
Studying how synthetic polymer assemblies respond to sequential enzymatic stimuli can uncover intricate interactions in biological systems. Using amidase- and esterase-responsive PEG-based diblock (DBA) and triblock amphiphiles (TBAs), we created two distinct formulations: amidase-responsive DBA with esterase-responsive TBA and vice versa. We studied their cascade responses to the two enzymes and the sequence of their introduction. These formulations underwent cascade mesophase transitions upon the addition of the DBA-degrading enzyme, transitioning from (i) coassembled micelles to (ii) triblock-based hydrogel, and ultimately to (iii) dissolved polymers when exposed to the TBA hydrolyzing enzyme. The specific pathway of the two mesophase transitions depended on the compositions of the formulations and the enzyme introduction sequence. The results highlight the potential for designing polymeric formulations with programmable multistep enzymatic responses, mimicking the complex behavior of biological macromolecules.
Collapse
Affiliation(s)
- Parul Rathee
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Nicole Edelstein-Pardo
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
| | - Gil Koren
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roy Beck
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- School
of Physics and Astronomy, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Roey J. Amir
- School
of Chemistry, Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
- The
Center for Physics and Chemistry of Living Systems, Tel-Aviv University, Tel Aviv 6997801, Israel
- Center
for Nanoscience and Nanotechnology, Tel-Aviv
University, Tel Aviv 6997801, Israel
- ADAMA
Center for Novel Delivery Systems in Crop Protection, Tel-Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
8
|
Yu K, Zhou P, Wang M, Zou P, Wang H, Liu Y, Xie M. β-Galactosidase-guided self-assembled 68Ga nanofibers probe for micro-PET tumor imaging. Bioorg Med Chem Lett 2024; 104:129727. [PMID: 38582132 DOI: 10.1016/j.bmcl.2024.129727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
β-galactosidase (β-gal) has high activity in various malignancies, which is suitable for targeted positron emission tomography (PET) imaging. Meanwhile, β-gal can successfully guide the formation of nanofibers, which enhances the intensity of imaging and extends the imaging time. Herein, we designed a β-galactosidase-guided self-assembled PET imaging probe [68Ga]Nap-NOTA-1Gal. We envisage that β-gal could recognize and cleave the target site, bringing about self-assembling to form nanofibers, thereby enhancing the PET imaging effect. The targeting specificity of [68Ga]Nap-NOTA-1Gal for detecting β-gal activity was examined using the control probe [68Ga]Nap-NOTA-1. Micro-PET imaging showed that tumor regions of [68Ga]Nap-NOTA-1Gal were visible after injection. And the tumor uptake of [68Ga]Nap-NOTA-1Gal was higher than [68Ga]Nap-NOTA-1 at all-time points. Our results demonstrated that the [68Ga]Nap-NOTA-1Gal can be used for the purpose of a new promising PET probe for helping diagnose cancer with high levels of β-gal activity.
Collapse
Affiliation(s)
- Kangxia Yu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Peng Zhou
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Meimei Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Pei Zou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Hongyong Wang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yaling Liu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| | - Minhao Xie
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China.
| |
Collapse
|
9
|
Xu Y, Luan X, He P, Zhu D, Mu R, Wang Y, Wei G. Fabrication and Functional Regulation of Biomimetic Interfaces and Their Antifouling and Antibacterial Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308091. [PMID: 38088535 DOI: 10.1002/smll.202308091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/26/2023] [Indexed: 05/25/2024]
Abstract
Biomimetic synthesis provides potential guidance for the synthesis of bio-nanomaterials by mimicking the structure, properties and functions of natural materials. Behavioral studies of biological surfaces with specific micro/nano structures are performed to explore the interactions of various molecules or organisms with biological surfaces. These explorations provide valuable inspiration for the development of biomimetic surfaces with similar effects. This work reviews some conventional preparation methods and functional modulation strategies for biomimetic interfaces. It aims to elucidate the important role of biomimetic interfaces with antifouling and low-pollution properties that can replace non-environmentally friendly coatings. Thus, biomimetic antifouling interfaces can be better applied in the field of marine antifouling and antimicrobial. In this review, the commonly used fabrication methods for biomimetic interfaces as well as some practical strategies for functional modulation is present in detail. These methods and strategies modify the physical structure and chemical properties of the biomimetic interfaces, thus improving the wettability, adsorption, drag reduction, etc. that they exhibit. In addition, practical applications are presented of various biomimetic interfaces for antifouling and look ahead to potential biomedical applications. By continuously discovering functional surfaces with biomimetic properties and studying their microstructure and macroscopic properties, more biomimetic interfaces will be developed.
Collapse
Affiliation(s)
- Youyin Xu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Xin Luan
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Peng He
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| |
Collapse
|
10
|
Mu R, Zhu D, Abdulmalik S, Wijekoon S, Wei G, Kumbar SG. Stimuli-responsive peptide assemblies: Design, self-assembly, modulation, and biomedical applications. Bioact Mater 2024; 35:181-207. [PMID: 38327824 PMCID: PMC10847779 DOI: 10.1016/j.bioactmat.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/09/2024] Open
Abstract
Peptide molecules have design flexibility, self-assembly ability, high biocompatibility, good biodegradability, and easy functionalization, which promote their applications as versatile biomaterials for tissue engineering and biomedicine. In addition, the functionalization of self-assembled peptide nanomaterials with other additive components enhances their stimuli-responsive functions, promoting function-specific applications that induced by both internal and external stimulations. In this review, we demonstrate recent advance in the peptide molecular design, self-assembly, functional tailoring, and biomedical applications of peptide-based nanomaterials. The strategies on the design and synthesis of single, dual, and multiple stimuli-responsive peptide-based nanomaterials with various dimensions are analyzed, and the functional regulation of peptide nanomaterials with active components such as metal/metal oxide, DNA/RNA, polysaccharides, photosensitizers, 2D materials, and others are discussed. In addition, the designed peptide-based nanomaterials with temperature-, pH-, ion-, light-, enzyme-, and ROS-responsive abilities for drug delivery, bioimaging, cancer therapy, gene therapy, antibacterial, as well as wound healing and dressing applications are presented and discussed. This comprehensive review provides detailed methodologies and advanced techniques on the synthesis of peptide nanomaterials from molecular biology, materials science, and nanotechnology, which will guide and inspire the molecular level design of peptides with specific and multiple functions for function-specific applications.
Collapse
Affiliation(s)
- Rongqiu Mu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Danzhu Zhu
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sama Abdulmalik
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Suranji Wijekoon
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, China
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering & Department of Materials Science and Engineering, University of Connecticut, Storrs, 06269, USA
- Department of Orthopaedic Surgery, University of Connecticut Health, Farmington, 06030, USA
| |
Collapse
|
11
|
Tyagi K, Venkatesh V. Emerging potential approaches in alkaline phosphatase (ALP) activatable cancer theranostics. RSC Med Chem 2024; 15:1148-1160. [PMID: 38665831 PMCID: PMC11042160 DOI: 10.1039/d3md00565h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 04/28/2024] Open
Abstract
Alkaline phosphatase (ALP) is known as one of the most crucial members of the phosphatase family and encompasses the enormous ability to hydrolyze the phosphate group in various biomolecules; by this, it regulates several events in the pool of biological medium. Owing to its overexpression in various cancer cells, recently, its potential has evolved as a prominent biomarker in cancer research. In this article, we have underlined the recent advances (2019 onwards) of alkaline phosphatase in the arena of emerging cancer theranostics. Herein, we mainly focused on phosphate-locked molecular systems such as peptides, prodrugs, and aggregation-induced emission (AIE)-based molecules. When these theranostics encounter cancer cell-overexpressed ALP, it results in the hydrolysis of the phosphate group, which leads to the release of highly cytotoxic agents along with turn-on fluorophore/pre-existing fluorophore.
Collapse
Affiliation(s)
- Kartikay Tyagi
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| | - V Venkatesh
- Laboratory of Chemical Biology and Medicinal Chemistry, Department of Chemistry, Indian Institute of Technology Roorkee Uttarakhand-247667 India
| |
Collapse
|
12
|
Kashyap S, Pal VK, Mohanty S, Roy S. Exploring a Solvent Dependent Strategy to Control Self-Assembling Behavior and Cellular Interaction in Laminin-Mimetic Short Peptide based Supramolecular Hydrogels. Chembiochem 2024; 25:e202300835. [PMID: 38390634 DOI: 10.1002/cbic.202300835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
Self-assembled hydrogels, fabricated through diverse non-covalent interactions, have been extensively studied in regenerative medicines. Inspired from bioactive functional motifs of ECM protein, short peptide sequences have shown remarkable abilities to replicate the intrinsic features of the natural extracellular milieu. In this direction, we have fabricated two short hydrophobic bioactive sequences derived from the laminin protein i. e., IKVAV and YIGSR. Based on the substantial hydrophobicity of these peptides, we selected a co-solvent approach as a suitable gelation technique that included different concentrations of DMSO as an organic phase along with an aqueous solution containing 0.1 % TFA. These hydrophobic laminin-based bioactive peptides with limited solubility in aqueous physiological environment showed significantly enhanced solubility with higher DMSO content in water. The enhanced solubility resulted in extensive intermolecular interactions that led to the formation of hydrogels with a higher-order entangled network along with improved mechanical properties. Interestingly, by simply modulating DMSO content, highly tunable gels were accessed in the same gelator domain that displayed differential physicochemical properties. Further, the cellular studies substantiated the potential of these laminin-derived hydrogels in enhancing cell-matrix interactions, thereby reinforcing their applications in tissue engineering.
Collapse
Affiliation(s)
- Shambhavi Kashyap
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Vijay Kumar Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sweta Mohanty
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| | - Sangita Roy
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector-81, Knowledge City Mohali, Punjab,140306, India
| |
Collapse
|
13
|
Kumar Pradhan M, Suresh Puthenpurackal S, Srivastava A. Enzymatic Dimerization-Induced Self-Assembly of Alanine-Tyramine Conjugates into Versatile, Uniform, Enzyme-Loaded Organic Nanoparticles. Angew Chem Int Ed Engl 2024; 63:e202314960. [PMID: 37992201 DOI: 10.1002/anie.202314960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
Herein, we report a novel enzymatic dimerization-induced self-assembly (e-DISA) procedure that converts alanine-tyramine conjugates into highly uniform enzyme-loaded nanoparticles (NPs) or nanocontainers by the action of horseradish peroxidase (HRP) in an aqueous medium under ambient conditions. The NP formation was possible with both enantiomers of alanine, and the average diameter could be varied from 150 nm to 250 nm (with a 5-12 % standard deviation of as-prepared samples) depending on the precursor concentration. About 60 % of the added HRP enzyme was entrapped within the NPs and was subsequently utilized for post-synthetic modification of the NPs with phenolic compounds such as tyramine or tannic acid. One-pot multi-enzyme entrapment of glucose oxidase (GOx) and peroxidase (HRP) within the NPs was also achieved. These GOx-HRP loaded NPs allowed multimodal detection of glucose, including that present in human saliva, with a limit of detection (LoD) of 740 nM through fluorimetry. The NPs exhibited good cytocompatibility and were stable to changes in pH (acidic to basic), temperature, ultrasonication, and even the presence of organic solvent (EtOH) to a certain extent, since they are stabilized by intermolecular hydrogen bonding, π-π, and CH-π interactions. The proposed e-DISA procedure can be widely expanded through the design of diverse enzyme-responsive precursors.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| | | | - Aasheesh Srivastava
- Department of Chemistry, IISER Bhopal, Bhopal, 462066, Madhya Pradesh, India
| |
Collapse
|
14
|
Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics 2023; 15:pharmaceutics15020482. [PMID: 36839803 PMCID: PMC9964150 DOI: 10.3390/pharmaceutics15020482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, self-assembled peptide nanotechnology has attracted a great deal of attention for its ability to form various regular and ordered structures with diverse and practical functions. Self-assembled peptides can exist in different environments and are a kind of medical bio-regenerative material with unique structures. These materials have good biocompatibility and controllability and can form nanoparticles, nanofibers and hydrogels to perform specific morphological functions, which are widely used in biomedical and material science fields. In this paper, the properties of self-assembled peptides, their influencing factors and the nanostructures that they form are reviewed, and the applications of self-assembled peptides as drug carriers are highlighted. Finally, the prospects and challenges for developing self-assembled peptide nanomaterials are briefly discussed.
Collapse
|
15
|
Noteborn WM, Vittala SK, Torredemer MB, Maity C, Versluis F, Eelkema R, Kieltyka RE. Switching the Mode of Drug Release from a Reaction-Coupled Low-Molecular-Weight Gelator System by Altering Its Reaction Pathway. Biomacromolecules 2023; 24:377-386. [PMID: 36562759 PMCID: PMC9832487 DOI: 10.1021/acs.biomac.2c01197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy, where either noncovalent or covalent bonding of the drug molecule dictates its rate and mechanism. Herein, we demonstrate an alternative approach using a reaction-coupled gelator to tune drug release in a facile and user-defined manner by altering the reaction pathway of the low-molecular-weight gelator (LMWG) and drug components through an acylhydrazone-bond-forming reaction. We show that an off-the-shelf drug with a reactive handle, doxorubicin, can be covalently bound to the gelator through its ketone moiety when the addition of the aldehyde component is delayed from 0 to 24 h, or noncovalently bound with its addition at 0 h. We also examine the use of an l-histidine methyl ester catalyst to prepare the drug-loaded hydrogels under physiological conditions. Fitting of the drug release profiles with the Korsmeyer-Peppas model corroborates a switch in the mode of release consistent with the reaction pathway taken: increased covalent ligation drives a transition from a Fickian to a semi-Fickian mode in the second stage of release with a decreased rate. Sustained release of doxorubicin from the reaction-coupled hydrogel is further confirmed in an MTT toxicity assay with MCF-7 breast cancer cells. We demonstrate the modularity and ease of the reaction-coupled approach to prepare drug-loaded self-assembled hydrogels in situ with tunable mechanics and drug release profiles that may find eventual applications in macroscale drug delivery.
Collapse
Affiliation(s)
- Willem
E. M. Noteborn
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Sandeepa K. Vittala
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Maria Broto Torredemer
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands
| | - Chandan Maity
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Frank Versluis
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Rienk Eelkema
- Department
of Chemical Engineering, Delft University
of Technology, Van der
Maasweg 9, 2629 HZDelft, The Netherlands
| | - Roxanne E. Kieltyka
- Supramolecular
and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RALeiden, The Netherlands,
| |
Collapse
|
16
|
Lin F, Jia C, Wu FG. Intracellular Enzyme-Instructed Self-Assembly of Peptides (IEISAP) for Biomedical Applications. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196557. [PMID: 36235094 PMCID: PMC9571778 DOI: 10.3390/molecules27196557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022]
Abstract
Despite the remarkable significance and encouraging breakthroughs of intracellular enzyme-instructed self-assembly of peptides (IEISAP) in disease diagnosis and treatment, a comprehensive review that focuses on this topic is still desirable. In this article, we carefully review the advances in the applications of IEISAP, including the development of various bioimaging techniques, such as fluorescence imaging, photoacoustic imaging, magnetic resonance imaging, positron-emission tomography imaging, radiation imaging, and multimodal imaging, which are successfully leveraged in visualizing cancer tissues and cells, bacteria, and enzyme activity. We also summarize the utilization of IEISAP in disease treatments, including anticancer, antibacterial, and antiinflammation applications, among others. We present the design, action modes, structures, properties, functions, and performance of IEISAP materials, such as nanofibers, nanoparticles, nanoaggregates, and hydrogels. Finally, we conclude with an outlook towards future developments of IEISAP materials for biomedical applications. It is believed that this review may foster the future development of IEISAP with better performance in the biomedical field.
Collapse
|
17
|
Self-Assembled Peptide Nanostructures for ECM Biomimicry. NANOMATERIALS 2022; 12:nano12132147. [PMID: 35807982 PMCID: PMC9268130 DOI: 10.3390/nano12132147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Proteins are functional building blocks of living organisms that exert a wide variety of functions, but their synthesis and industrial production can be cumbersome and expensive. By contrast, short peptides are very convenient to prepare at a low cost on a large scale, and their self-assembly into nanostructures and gels is a popular avenue for protein biomimicry. In this Review, we will analyze the last 5-year progress on the incorporation of bioactive motifs into self-assembling peptides to mimic functional proteins of the extracellular matrix (ECM) and guide cell fate inside hydrogel scaffolds.
Collapse
|