1
|
Keshavarz M, Mohammadi M, Shokrolahi F. Progress in injectable hydrogels for hard tissue regeneration in the last decade. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025:1-39. [PMID: 39853308 DOI: 10.1080/09205063.2024.2436292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/26/2024] [Indexed: 01/26/2025]
Abstract
Bone disorders have increased with increasing the human lifespan, and despite the tissue's ability to self-regeneration, in many congenital problems and hard fractures, bone grafting such as autograft, allograft, and biomaterials implantation through surgery is traditionally used. Because of the adverse effects of these methods, the emergence of injectable hydrogels without the need for surgery and causing more pain for the patient is stunning to develop a new pattern for hard tissue engineering. These materials are formed with various natural and synthetic polymers with a crosslinked network through various chemical methods such as click chemistry, Michael enhancement, Schiff's base and enzymatic reaction and physical interactions with high water absorption which can mimic the environment of cells. The purpose of this research is to review the capabilities of this class of materials in hard tissue regeneration in the last decade through adaptable physical and chemical properties, the ability to fill defect sites with an irregular shape, and the ability to grow hormones or release drugs, in response to external stimuli.
Collapse
Affiliation(s)
- Mahya Keshavarz
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Mohsen Mohammadi
- Department of Polymer Engineering, Faculty of Engineering, Qom University of Technology, Qom, Iran
| | - Fatemeh Shokrolahi
- Department of Biomaterials, Faculty of Science, Iran Polymer and Petrochemical Institute, Tehran, Iran
| |
Collapse
|
2
|
Luo T, Lu X, Ma H, Cheng Q, Liu G, Ding C, Hu Y, Yang R. Design Strategy, On-Demand Control, and Biomedical Engineering Applications of Wet Adhesion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:25729-25757. [PMID: 39575642 DOI: 10.1021/acs.langmuir.4c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
The adhesion of tissues to external devices is fundamental to numerous critical applications in biomedical engineering, including tissue and organ repair, bioelectronic interfaces, adhesive robotics, wearable electronics, biomedical sensing and actuation, as well as medical monitoring, treatment, and healthcare. A key challenge in this context is that tissues are typically situated in aqueous and dynamic environments, which poses a bottleneck to further advancements in these fields. Wet adhesion technology (WAT) presents an effective solution to this issue. In this review, we summarize the three major design strategies and control methods of wet adhesion, comprehensively and systematically introducing the latest applications and advancements of WAT in the field of biomedical engineering. First, single adhesion mechanism under the frameworks of the three design strategies is systematically introduced. Second, control methods for adhesion are comprehensively summarized, including spatiotemporal control, detachment control, and reversible adhesion control. Third, a systematic summary and discussion of the latest applications of WAT in biomedical engineering research and education were presented, with a particular focus on innovative applications such as tissue-electronic interface devices, ingestible devices, end-effector components, in vivo medical microrobots, and medical instruments and equipment. Finally, opportunities and challenges encountered in the design and development of wet adhesives with advanced adhesive performance and application prospects are discussed.
Collapse
Affiliation(s)
- Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Xingqi Lu
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Hui Ma
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Qilong Cheng
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Guangli Liu
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| |
Collapse
|
3
|
Zhang W, Liu S, Wang L, Li B, Xie M, Deng Y, Zhang J, Zeng H, Qiu L, Huang L, Gou T, Cen X, Tang J, Wang J. Triple-crosslinked double-network alginate/dextran/dendrimer hydrogel with tunable mechanical and adhesive properties: A potential candidate for sutureless keratoplasty. Carbohydr Polym 2024; 344:122538. [PMID: 39218556 DOI: 10.1016/j.carbpol.2024.122538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/13/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
An ideal adhesive hydrogel must possess high adhesion to the native tissue, biocompatibility, eligible biodegradability, and good mechanical compliance with the substrate tissues. We constructed an interpenetrating double-network hydrogel containing polysaccharides (alginate and dextran) and nanosized spherical dendrimer by both physical and chemical crosslinking, thus endowing the hydrogel with a broad range of mechanical properties, adhesive properties, and biological functions. The double-network hydrogel has moderate pore sizes and swelling properties. The chelation of calcium ions significantly enhances the tensile and compressive properties. The incorporation of dendrimer improves both the mechanical and adhesive properties. This multicomponent interpenetrating network hydrogel has excellent biocompatibility, tunable mechanical and adhesive properties, and satisfied multi-functions to meet the complex requirements of wound healing and tissue engineering. The hydrogel exhibits promising corneal adhesion capabilities in vitro, potentially supplanting the need for sutures in corneal stromal surgery and mitigating the risks associated with donor corneal damage and graft rejection during corneal transplantation. This novel polysaccharide and dendrimer hydrogel also shows good results in sutureless keratoplasty, with high efficiency and reliability. Based on the clinical requirements for tissue bonding and wound closure, the hydrogel provides insight into solving the mechanical properties and adhesive strength of tissue adhesives.
Collapse
Affiliation(s)
- Wen Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shujing Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lixiang Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Boxuan Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Tianjin Institutes of Health Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Mengzhen Xie
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yingping Deng
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jialuo Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Huazhang Zeng
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Li Qiu
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lisha Huang
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tao Gou
- National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaobo Cen
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing Tang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Juan Wang
- College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
| |
Collapse
|
4
|
Khan MUA, Aslam MA, Yasin T, Abdullah MFB, Stojanović GM, Siddiqui HM, Hasan A. Metal-organic frameworks: synthesis, properties, wound dressing, challenges and scopes in advanced wound dressing. Biomed Mater 2024; 19:052001. [PMID: 38976990 DOI: 10.1088/1748-605x/ad6070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 07/10/2024]
Abstract
Wound healing is a critical but complex biological process of skin tissue repair and regeneration resulting from various systems working together at the cellular and molecular levels. Quick wound healing and the problems associated with traditional wound repair techniques are being overcome with multifunctional materials. Over time, this research area has drawn significant attention. Metal-organic frameworks (MOFs), owning to their peculiar physicochemical characteristics, are now considered a promising class of well-suited porous materials for wound healing in addition to their other biological applications. This detailed literature review provides an overview of the latest developments in MOFs for wound healing applications. We have discussed the synthesis, essential biomedical properties, wound-healing mechanism, MOF-based dressing materials, and their wound-healing applications. The possible major challenges and limitations of MOFs have been discussed, along with conclusions and future perspectives. This overview of the literature review addresses MOFs-based wound healing from several angles and covers the most current developments in the subject. The readers may discover how the MOFs advanced this discipline by producing more inventive, useful, and successful dressings. It influences the development of future generations of biomaterials for the healing and regeneration of skin wounds.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Tooba Yasin
- Polymer Chemistry Laboratory, Department of Chemistry, Quaid-i-Azam University, 45320 Islamabad, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, 16150, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| |
Collapse
|
5
|
Serro AP, Silva DC, Fernandes AI. Hydrogel-Based Novel Biomaterials: Achievements and Prospects. Gels 2024; 10:436. [PMID: 39057459 PMCID: PMC11275420 DOI: 10.3390/gels10070436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
In recent decades, hydrogels have garnered significant attention, thanks to their extensive biomedical and pharmaceutical applications [...].
Collapse
Affiliation(s)
- Ana Paula Serro
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Diana Cristina Silva
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Ana Isabel Fernandes
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, Campus Universitário, 2829-511 Caparica, Portugal
| |
Collapse
|
6
|
Wang X, Li Y, Nie J, Wen G, Li W. Modular co-assembly of peptides and polyoxometalates into underwater adhesives with photoluminescence and adjustable adhesion. SOFT MATTER 2023; 19:8659-8667. [PMID: 37927210 DOI: 10.1039/d3sm01151h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Supramolecular polymerization between cationic peptides and anionic polyoxometalates has emerged as a promising strategy for the creation of peptide-based biomimetic underwater adhesives. However, the extremely rigorous requirements for peptide design are an important obstacle to the fabrication of available peptide adhesives with controlled adhesion and versatile functionality. Inspired by marine sessile organisms in nature, here we reported a modular co-assembly method to easily produce peptide/polyoxometalate underwater adhesive materials through mixing two complementary cationic peptides (Pep1 and Pep2) with a single anionic polyoxometalate K6H[SiW9V3O40] in aqueous solution, which are not possible to be obtained from an individual peptide module. We demonstrated that the relatively hydrophobic Pep1 contributes to the bulk cohesion of the resulting adhesive, while the relatively hydrophilic Pep2 not only enables the interfacial adhesion but also regulates the bulk cohesion of the Pep1/Pep2/SiW9V3 adhesive. Rheological and shear adhesion tests showed that the macroscopic adhesion performance of the resulting adhesive materials could be conveniently adjusted by simply changing the molar ratio of the complementary peptide modules without any complicated peptide design. Interestingly, the luminescence properties of K11[Eu(PW11O39)2] (labelled as EuPW11) could be maintained within the Pep1/Pep2/EuPW11 adhesive even in a water environment. The lifetime of the Pep1/Pep2/EuPW11 adhesive was 2.19 ms. The fluorescence quantum yield of the Pep1/Pep2/EuPW11 adhesive was measured to be 27.46%. This study unveils that the modular co-assembly method can effectively simplify the material design of peptide/polyoxometalate underwater adhesives, which will significantly broaden the horizon of material pools and extend their availability space.
Collapse
Affiliation(s)
- Xinyan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Yiwen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Guang Wen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China.
| |
Collapse
|
7
|
Raina N, Haque S, Tuli HS, Jain A, Slama P, Gupta M. Optimization and Characterization of a Novel Antioxidant Naringenin-Loaded Hydrogel for Encouraging Re-Epithelization in Chronic Diabetic Wounds: A Preclinical Study. ACS OMEGA 2023; 8:34995-35011. [PMID: 37779948 PMCID: PMC10536028 DOI: 10.1021/acsomega.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Nonhealed wounds are one of the most dangerous side effects of type-2 diabetes, which is linked to a high frequency of bacterial infections around the globe that eventually results in amputation of limbs. The present investigation aimed to explore the drug-loaded (naringenin) hydrogel system for chronic wound healing. The hydrogel membranes comprising Na-alginate with F-127 and poly(vinyl alcohol) were developed to treat chronic wounds using the quality-by-design (QbD) approach. The optimized formulation was tested for various parameters, such as swelling, gel fraction, water vapor transition rate (WVTR), etc. In vitro evaluation indicated that a drug-loaded hydrogel displayed better tissue adhesiveness and can release drugs for a prolonged duration of 12 h. Scratch assay performed on L929 cell lines demonstrated good cell migration. The diabetic wound healing potential of the hydrogel membrane was assessed in streptozotocin-induced male Wistar rats (50 mg/kg). Higher rates of wound closure, re-epithelialization, and accumulation of collagen were seen in in vivo experiments. Histopathologic investigation correspondingly implied that the drug-loaded hydrogel could enhance dermal wound repair. The improved antimicrobial and antioxidant properties with expedited healing indicated that the drug-loaded hydrogel is a perfect dressing for chronic wounds.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Hardeep Singh Tuli
- Department
of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering
College, Maharishi Markandeshwar (Deemed
to Be University), Mullana-Ambala 133207, India
| | - Atul Jain
- Department
of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University
(DPSRU), New Delhi 110017, India
| | - Petr Slama
- Laboratory
of Animal Immunology and Biotechnology, Department of Animal Morphology,
Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Madhu Gupta
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
8
|
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV. Exopolysaccharides Producing Bacteria: A Review. Microorganisms 2023; 11:1541. [PMID: 37375041 DOI: 10.3390/microorganisms11061541] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Bacterial exopolysaccharides (EPS) are essential natural biopolymers used in different areas including biomedicine, food, cosmetic, petroleum, and pharmaceuticals and also in environmental remediation. The interest in them is primarily due to their unique structure and properties such as biocompatibility, biodegradability, higher purity, hydrophilic nature, anti-inflammatory, antioxidant, anti-cancer, antibacterial, and immune-modulating and prebiotic activities. The present review summarizes the current research progress on bacterial EPSs including their properties, biological functions, and promising applications in the various fields of science, industry, medicine, and technology, as well as characteristics and the isolation sources of EPSs-producing bacterial strains. This review provides an overview of the latest advances in the study of such important industrial exopolysaccharides as xanthan, bacterial cellulose, and levan. Finally, current study limitations and future directions are discussed.
Collapse
Affiliation(s)
- Alexander I Netrusov
- Department of Microbiology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Biology and Biotechnology, High School of Economics, 119991 Moscow, Russia
| | - Elena V Liyaskina
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Irina V Kurgaeva
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| | - Alexandra U Liyaskina
- Institute of the World Ocean, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Viktor V Revin
- Department of Biotechnology, Biochemistry and Bioengineering, National Research Ogarev Mordovia State University, 430005 Saransk, Russia
| |
Collapse
|
9
|
Cai M, Chen L, Wang T, Liang Y, Zhao J, Zhang X, Li Z, Wu H. Hydrogel scaffolds in the treatment of spinal cord injury: a review. Front Neurosci 2023; 17:1211066. [PMID: 37325033 PMCID: PMC10266534 DOI: 10.3389/fnins.2023.1211066] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/12/2023] [Indexed: 06/17/2023] Open
Abstract
Spinal cord injury (SCI) is a disease of the central nervous system often caused by accidents, and its prognosis is unsatisfactory, with long-term adverse effects on patients' lives. The key to its treatment lies in the improvement of the microenvironment at the injury and the reconstruction of axons, and tissue repair is a promising therapeutic strategy. Hydrogel is a three-dimensional mesh structure with high water content, which has the advantages of biocompatibility, degradability, and adjustability, and can be used to fill pathological defects by injectable flowing hydrophilic material in situ to accurately adapt to the size and shape of the injury. Hydrogels mimic the natural extracellular matrix for cell colonization, guide axon extension, and act as a biological scaffold, which can be used as an excellent carrier to participate in the treatment of SCI. The addition of different materials to make composite hydrogel scaffolds can further enhance their performance in all aspects. In this paper, we introduce several typical composite hydrogels and review the research progress of hydrogel for SCI to provide a reference for the clinical application of hydrogel therapy for SCI.
Collapse
Affiliation(s)
- Manqi Cai
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Liji Chen
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Tao Wang
- Department of Surgery, The Third Hospital of Guangdong Medical University (Longjiang Hospital of Shunde District), Foshan, China
| | - Yinru Liang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jie Zhao
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaomin Zhang
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Hongfu Wu
- Dongguan Key Laboratory of Stem Cell and Regenerative Tissue Engineering, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
10
|
Yin Y, Xu Q, Wei X, Ma Q, Li D, Zhao J. Rosmarinic Acid-Grafted Dextran/Gelatin Hydrogel as a Wound Dressing with Improved Properties: Strong Tissue Adhesion, Antibacterial, Antioxidant and Anti-Inflammatory. Molecules 2023; 28:molecules28104034. [PMID: 37241772 DOI: 10.3390/molecules28104034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Designing a strong tissue adhesive and multifunctional hydrogel dressing for various skin injuries is still a significant challenge. Based on the bioactive activities of rosmarinic acid (RA) and its catechol structure being similar to dopamine, RA-grafted dextran/gelatin hydrogel (ODex-AG-RA) was designed and systemically characterized in this study. The ODex-AG-RA hydrogel exhibited excellent physicochemical properties, including fast gelation time (61.6 ± 2.8 s), strong adhesive strength (27.30 ± 2.02 kPa) and enhanced mechanical properties (1.31 × 104 Pa of G'). The examination of hemolysis and co-culturing with L929 cells showed the strong in vitro biocompatibility of ODex-AG-RA hydrogels. The ODex-AG-RA hydrogels exhibited a 100% mortality rate against S. aureus and at least 89.7% against E. coli in vitro. In vivo evaluation for efficacy in skin wound healing was carried out in a rat model of full-thickness skindefect. The amount of collagen deposition and CD31 on wounds in the two ODex-AG-RA-1 groups on day 14 was 4.3 times and 2.3 times of that in the control group, respectively. Furthermore, the mechanism of ODex-AG-RA-1 for promoting wound healing was proved to be related to its anti-inflammatory properties by adjusting the expression of inflammatory cytokines (TNF-α and CD163) and reducing the level of oxidative stress (MDA and H2O2). Overall, this study demonstrated the wound-healing efficacy of RA-grafted hydrogels for the first time. ODex-AG-RA-1 hydrogel, due to its adhesive, anti-inflammatory, antibacterial and antioxidative activities, was a promising candidate as a wound dressing.
Collapse
Affiliation(s)
- Yi Yin
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qianqian Xu
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xin Wei
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Qianyun Ma
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Dongsheng Li
- Tianjin Key Laboratory of Innovative Ophthalmic Optics Technology, Tianjin Shiji Kangtai Biomedical Engineering Co., Ltd., Tianjin 300462, China
| | - Juanjuan Zhao
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
11
|
Peng H, Liu Y, Xiao F, Zhang L, Li W, Wang B, Weng Z, Liu Y, Chen G. Research progress of hydrogels as delivery systems and scaffolds in the treatment of secondary spinal cord injury. Front Bioeng Biotechnol 2023; 11:1111882. [PMID: 36741755 PMCID: PMC9889880 DOI: 10.3389/fbioe.2023.1111882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Secondary spinal cord injury (SSCI) is the second stage of spinal cord injury (SCI) and involves vasculature derangement, immune response, inflammatory response, and glial scar formation. Bioactive additives, such as drugs and cells, have been widely used to inhibit the progression of secondary spinal cord injury. However, the delivery and long-term retention of these additives remain a problem to be solved. In recent years, hydrogels have attracted much attention as a popular delivery system for loading cells and drugs for secondary spinal cord injury therapy. After implantation into the site of spinal cord injury, hydrogels can deliver bioactive additives in situ and induce the unidirectional growth of nerve cells as scaffolds. In addition, physical and chemical methods can endow hydrogels with new functions. In this review, we summarize the current state of various hydrogel delivery systems for secondary spinal cord injury treatment. Moreover, functional modifications of these hydrogels for better therapeutic effects are also discussed to provide a comprehensive insight into the application of hydrogels in the treatment of secondary spinal cord injury.
Collapse
Affiliation(s)
- Haichuan Peng
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yongkang Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Limei Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Wenting Li
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Binghan Wang
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Zhijian Weng
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China
| | - Yu Liu
- The Department of Cerebrovascular Disease, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| | - Gang Chen
- The Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai, China,*Correspondence: Yu Liu, ; Gang Chen,
| |
Collapse
|
12
|
Liu S, Jiang N, Chi Y, Peng Q, Dai G, Qian L, Xu K, Zhong W, Yue W. Injectable and Self-Healing Hydrogel Based on Chitosan-Tannic Acid and Oxidized Hyaluronic Acid for Wound Healing. ACS Biomater Sci Eng 2022; 8:3754-3764. [PMID: 35993819 DOI: 10.1021/acsbiomaterials.2c00321] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Self-healing performance plays an important role in the in situ microinvasive injection of hydrogels, which can reduce sudden drug release and prolong the service life of hydrogels. In this paper, a multifunctional injectable and self-healing hydrogel for wound healing was developed. Chitosan (CS) was modified with TA to achieve potential adhesion, anti-inflammatory properties, and slower degradation rate. The hydrogel was formed by Schiff base reaction based on amino groups in CS and aldehyde groups in oxidized hyaluronic acid (OHA). The gel formation process was quick and convenient in mild conditions without extra initiators. Due to the dynamically reversible covalent bonds, the hydrogel could self-heal within 2 min after injection. It also had good biocompatibility and hemostatic performance. With the addition of TA, the hydrogel acquired anti-inflammatory properties and promoted cell growth, effectively accelerating the wound-healing process in vivo. The CS-TA/OHA hydrogel is expected to be used for skin repair.
Collapse
Affiliation(s)
- Sixian Liu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Nian Jiang
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Yuquan Chi
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Qiang Peng
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Guoru Dai
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Ling Qian
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Keming Xu
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Wenying Zhong
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, (China Pharmaceutical University), 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| | - Wanqing Yue
- Department of Chemistry, Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China.,Key Laboratory of Drug Quality Control and Pharmacovigilance Ministry of Education, (China Pharmaceutical University), 638 Longmian Avenue, Chunhua Street, Jiangning District, Nanjing 211198, People's Republic of China
| |
Collapse
|
13
|
Su C, Chen Y, Tian S, Lu C, Lv Q. Research Progress on Emerging Polysaccharide Materials Applied in Tissue Engineering. Polymers (Basel) 2022; 14:polym14163268. [PMID: 36015525 PMCID: PMC9413976 DOI: 10.3390/polym14163268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
The development and application of polysaccharide materials are popular areas of research. Emerging polysaccharide materials have been widely used in tissue engineering fields such as in skin trauma, bone defects, cartilage repair and arthritis due to their stability, good biocompatibility and reproducibility. This paper reviewed the recent progress of the application of polysaccharide materials in tissue engineering. Firstly, we introduced polysaccharide materials and their derivatives and summarized the physicochemical properties of polysaccharide materials and their application in tissue engineering after modification. Secondly, we introduced the processing methods of polysaccharide materials, including the processing of polysaccharides into amorphous hydrogels, microspheres and membranes. Then, we summarized the application of polysaccharide materials in tissue engineering. Finally, some views on the research and application of polysaccharide materials are presented. The purpose of this review was to summarize the current research progress on polysaccharide materials with special attention paid to the application of polysaccharide materials in tissue engineering.
Collapse
Affiliation(s)
- Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence:
| |
Collapse
|