1
|
Chen Z, Zhou Y, Li L, Ma W, Li Y, Yang Z. Activatable Molecular Probes With Clinical Promise for NIR-II Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2411787. [PMID: 39707663 DOI: 10.1002/smll.202411787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/09/2024] [Indexed: 12/23/2024]
Abstract
The second near-infrared window (NIR-II) fluorescence imaging has been widely adopted in basic scientific research and preclinical applications due to its exceptional spatiotemporal resolution and deep tissue penetration. Among the various fluorescent agents, organic small-molecule fluorophores are considered the most promising candidates for clinical translation, owing to their well-defined chemical structures, tunable optical properties, and excellent biocompatibility. However, many currently available NIR-II fluorophores exhibit an "always-on" fluorescence signal, which leads to background noise and compromises diagnostic accuracy during disease detection. Developing NIR-II activatable organic small-molecule fluorescent probes (AOSFPs) for accurately reporting pathological changes is key to advancing NIR-II fluorescence imaging toward clinical application. This review summarizes the rational design strategies for NIR-II AOSFPs based on four core structures (cyanine, hemicyanine, xanthene, and BODIPY). These NIR-II AOSFPs hold substantial potential for clinical translation. Furthermore, the recent advances in NIR-II AOSFPs for NIR-II bioimaging are comprehensively reviewed, offering clear guidance and direction for their further development. Finally, the prospective efforts to advance NIR-II AOSFPs for clinical applications are outlined.
Collapse
Affiliation(s)
- Zikang Chen
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Yongjie Zhou
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Li Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Wen Ma
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| | - Yuzhen Li
- Department of Pharmacy, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, China
| | - Zhen Yang
- Strait Institute of Flexible Electronics (SIFE Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, China
| |
Collapse
|
2
|
Chen D, Xu Y, Wang Y, Teng C, Li X, Yin D, Yan L. J-aggregates of strong electron-donating groups linked Aza-BODIPY adjusting by polypeptide for NIR-II phototheranostics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124789. [PMID: 39013303 DOI: 10.1016/j.saa.2024.124789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/25/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024]
Abstract
The commonly employed strategies for engineering second near-infrared (NIR-II) organic phototheranostic agents are based on expanding conjugated backbone length, strengthening donor (D)-acceptor (A) effect, or forming J-aggregates. We constructed the D-A-D' structure by incorporating strong electron-donating methoxy and tetraphenylethene (TPE) moieties on the electron-deficient Aza-BODIPY core, and simultaneously expanded the π-conjugation effect by introducing thiophene groups, to obtain a dye BDP-TPE. Next, the nanoparticles P-TPE were prepared via the assembly of BDP-TPE with amphiphilic polypeptides (mPEG2000-P(Asp)10), and successfully constructed the J-aggregates. The obtained P-TPE exhibited strong absorption and fluorescence with maxima at 808 and 1018 nm, respectively, with a conspicuous absolute quantum yield of 0.241 %. Moreover, P-TPE also showed excellent biocompatibility, and high photothermal conversion efficiency of 61.15 %, and excellent resistance to pH, long-term storage, and photobleaching. In vitro and in vivo experiments revealed that P-TPE exhibited good biocompatibility and effectively achieved NIR-II fluorescence imaging-guided PTT with complete tumor ablation under 808 nm laser irradiation. These results provided good evidence for the use of P-TPE as a NIR-II fluorescence imaging-guided PTT therapeutic agent in vivo.
Collapse
Affiliation(s)
- Dejia Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yixuan Xu
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Xin Li
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96, 230026, Anhui, PR China.
| |
Collapse
|
3
|
Xu Y, Zhao Y, Zhu H, Li Y, Gong H, Lv B, Luo N, Zhao B, Qiao W, Wang ZY. The Aggregation Units of J-Aggregates: Transitioning from Monomers to Hydrogen-Bonded Dimers. J Phys Chem Lett 2024; 15:9010-9015. [PMID: 39186517 DOI: 10.1021/acs.jpclett.4c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
In recent years, J-aggregates, as supramolecular assembly structures, have increasingly attracted scientific interest. Currently, the prevailing consensus is that J-aggregates are formed through the interleaved stacking of monomers arranged in parallel. However, our findings suggest that the fundamental units constituting J-aggregates are not limited to monomers alone but also encompass molecular aggregates interconnected by noncovalent bonds, which we designate as aggregation units. We have synthesized three asymmetric pyrrolopyrrole cyanine (PPCy) dyes capable of forming hydrogen-bonded dimers and have verified that these hydrogen-bonded dimers can serve as aggregation units to generate J-aggregates. The detailed structural and optical properties revealed that the J-aggregates of these dyes exhibited a significantly red-shifted and narrowed emission in the near-infrared (NIR) fluorescence compared to the monomers.
Collapse
Affiliation(s)
- Yingnan Xu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Huaxin Zhu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yunchao Li
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hanwei Gong
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bohao Lv
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ning Luo
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Bo Zhao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Xu Y, Meng X, Zhao Y, Jia M, Zhu H, Song J, Su Y, Qiao W, Qi J, Wang ZY. Pyrrolopyrrole Cyanine J-Aggregate Nanoparticles with High Near-Infrared Fluorescence Brightness and Photothermal Performance for Efficient Phototheranostics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39005-39020. [PMID: 39034639 DOI: 10.1021/acsami.4c06225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Advanced photosensitizers for high-performance fluorescence imaging-guided photothermal therapy demand excellent near-infrared (NIR) brightness [molar absorption coefficient (ε) × quantum yield (QY)] and exceptional photothermal performance [ε × photothermal conversion efficiency (PCE)]. However, integrating high brightness and potent photothermal performance within a single molecule faces a formidable challenge. This article proposes a method to address this issue by preparing J-aggregate nanoparticles (NPs) using molecules with high ε. J-aggregates effectively improve QY and induce molecular emission redshift, while high ε molecules play a crucial role in improving the brightness and photothermal performance. By optimizing the molecular structure based on the pyrrolopyrrole cyanine (PPCy), precise control over the QY and PCE of PPCy J-aggregates is achieved. Ultimately, PDDO NPs exhibiting superior brightness (ε × QY = 3.32 × 104 M-1 cm-1) and photothermal performance (ε × PCE = 1.21 × 105 M-1 cm-1) are identified as high-performance photosensitizers. Notably, each parameter represents one of the highest levels among the reported fluorescence or photothermal probes to date. The in vivo studies demonstrate that PDDO NPs possess exceptional NIR imaging capabilities and remarkable photothermal tumor inhibition rates. This study provides innovative insights into the development of high-performance multifunctional photosensitizers.
Collapse
Affiliation(s)
- Yingnan Xu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xue Meng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yang Zhao
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Mengmeng Jia
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Huaxin Zhu
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yan Su
- Key Laboratory of Materials Modification By Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Wenqiang Qiao
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Frontiers Science Center for Cell Responses, and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhi Yuan Wang
- State Key Laboratory of Fine Chemicals, Department of Polymer Science & Materials, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
5
|
Xiao H, Wu GL, Tan S, Tan X, Yang Q. Recent Progress on Tumor Microenvironment-Activated NIR-II Phototheranostic Agents with Simultaneous Activation for Diagnosis and Treatment. Chem Asian J 2024; 19:e202301036. [PMID: 38230541 DOI: 10.1002/asia.202301036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Malignant tumors seriously threaten human life and well-being. Emerging Near-infrared II (NIR-II, 1000-1700 nm) phototheranostic nanotechnology integrates diagnostic and treatment modalities, offering merits including improved tissue penetration and enhanced spatiotemporal resolution. This remarkable progress has opened promising avenues for advancing tumor theranostic research. The tumor microenvironment (TME) differs from normal tissues, exhibiting distinct attributes such as hypoxia, acidosis, overexpressed hydrogen peroxide, excess glutathione, and other factors. Capitalizing on these attributes, researchers have developed TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic attributes concurrently. Therefore, developing TME-activatable NIR-II phototheranostic agents with diagnostic and therapeutic activation holds significant research importance. Currently, research on TME-activatable NIR-II phototheranostic agents is still in its preliminary stages. This review examines the recent advances in developing dual-functional NIR-II activatable phototheranostic agents over the past years. It systematically presents NIR-II phototheranostic agents activated by various TME factors such as acidity (pH), hydrogen peroxide (H2 O2 ), glutathione (GSH), hydrogen sulfide (H2 S), enzymes, and their hybrid. This encompasses NIR-II fluorescence and photoacoustic imaging diagnostics, along with therapeutic modalities, including photothermal, photodynamic, chemodynamic, and gas therapies triggered by these TME factors. Lastly, the difficulties and opportunities confronting NIR-II activatable phototheranostic agents in the simultaneous diagnosis and treatment field are highlighted.
Collapse
Affiliation(s)
- Hao Xiao
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Gui-Long Wu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Senyou Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Xiaofeng Tan
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| | - Qinglai Yang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, 28, West Changsheng Road, Hengyang City, Hunan Province, 421001, China
- National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, 53 Xiangchun Road, Changsha City, Hunan Province, 410008, China
| |
Collapse
|
6
|
Hu X, Zhu C, Sun F, Chen Z, Zou J, Chen X, Yang Z. J-Aggregation Strategy toward Potentiated NIR-II Fluorescence Bioimaging of Molecular Fluorophores. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304848. [PMID: 37526997 DOI: 10.1002/adma.202304848] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/28/2023] [Indexed: 08/03/2023]
Abstract
Molecular fluorophores emitting in the second near-infrared (NIR-II, 1000-1700 nm) window with strong optical harvesting and high quantum yields hold great potential for in vivo deep-tissue bioimaging and high-resolution biosensing. Recently, J-aggregates are harnessed to engineer long-wavelength NIR-II emitters and show unique superiority in tumor detection, vessel mapping, surgical navigation, and phototheranostics due to their bathochromic-shifted optical bands in the required slip-stacked arrangement aggregation state. However, despite the preliminary progress of NIR-II J-aggregates and theoretical study of structure-property relationships, further paradigms of NIR-II J-aggregates remain scarce due to the lack of study on aggregated fluorophores with slip-stacked fashion. In this effort, how to utilize the specific molecular structure to form slip-stacked packing motifs with J-type aggregated exciton coupling is emphatically elucidated. First, several molecular regulating strategies to achieve NIR-II J-aggregates containing intermolecular interactions and external conditions are positively summarized and deeply analyzed. Then, the recent reports on J-aggregates for NIR-II bioimaging and theranostics are systematically summarized to provide a clear reference and direction for promoting the development of NIR-II organic fluorophores. Eventually, the prospective efforts on ameliorating and promoting NIR-II J-aggregates to further clinical practices are outlined.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Caijun Zhu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Fengwei Sun
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang, 330013, China
| | - Jianhua Zou
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 119074, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR) 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| | - Zhen Yang
- Strait Laboratory of Flexible Electronics (SLoFE), Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, China
| |
Collapse
|
7
|
Yang N, Song S, Akhtar MH, Liu C, Yao L, Yu J, Li Y, Li Q, He D, Yu C. J-Aggregation induced NIR-II fluorescence: an aza-BODIPY luminogen for efficient phototheranostics. J Mater Chem B 2023; 11:9712-9720. [PMID: 37791404 DOI: 10.1039/d3tb01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The development of organic dyes with emission peaks in the second near-infrared window (NIR-II 1000-1700 nm) is highly desirable for in vivo imaging and imaging-guided phototheranostics. However, the lack of appropriate molecular frameworks and the challenges associated with complex synthesis critically hinder the development of new candidate fluorophores. J-Aggregation is considered as a smart and straightforward way to construct such a therapeutic agent with NIR-II fluorescence imaging properties. Here, we present the design and synthesis of an aza-BODIPY probe (TA). Upon encapsulation within the amphiphilic polymer DSPEG-PEG2000-NH2, TA underwent self-assembly and formed J-aggregates (TAJ NPs), which showed emission at 1020 nm. High spatial resolution and adequate signal-to-noise ratio of the TAJ NPs are demonstrated for noninvasive bioimaging of the vasculature, lymph nodes and bones of mice in the NIR-II region. Moreover, the TAJ NPs exhibited good tumor enrichment efficiency with reduced liver accumulation and significant imaging-guided phototherapy performance against lung cancer cells. Taken together, this work not only introduces a new NIR-II imaging and phototheranostic agent based on J-aggregates, but also provides insight into the development of versatile organic dyes for future clinical implementation.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Mahmood Hassan Akhtar
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lang Yao
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jiayuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, P. R. China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
8
|
Geng H, Lin W, Liu J, Pei Q, Xie Z. Choline phosphate lipid-hitchhiked near-infrared BODIPY nanoparticles for enhanced phototheranostics. J Mater Chem B 2023; 11:5586-5593. [PMID: 37190791 DOI: 10.1039/d3tb00175j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Phototheranostics integrating optical imaging and phototherapy has attracted extensive attention. Achieving nanophototherapeutics with near infrared (NIR)-light synchronously triggered photodynamic therapy (PDT) and photothermal therapy (PTT) is challenging. Herein, we develop a multifunctional theranostic nanoplatform prepared from the co-assembly of NIR boron dipyrromethene (BODIPY) with a cooperative D-π-A structure of a thiophene-BODIPY core and benzene-diethylamino, and a choline phosphate lipid. The as-fabricated nanoparticles (DBNPs) exhibited desirable NIR absorption, uniform spherical morphology and good colloidal stability. The elaborate molecular design and supramolecular assembly endowed DBNPs with desirable PDT and PTT activities. Upon 808 nm laser irradiation, the DBNPs efficiently generated active singlet oxygen and regional hyperpyrexia, with a photothermal conversion efficiency of 37.6%. The excellent PDT and PTT performance of DBNPs boosted the potent in vitro and in vivo anti-tumor effects. In addition, these nanoparticles manifested their good capability of NIR fluorescence imaging of tumors. Overall, the DBNPs provide a paradigm for delivering hydrophobic phototherapy molecules with phospholipids for enhanced tumor treatment and imaging.
Collapse
Affiliation(s)
- Huafeng Geng
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, P. R. China.
| | - Wenhai Lin
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Junbao Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun 130033, P. R. China.
| | - Qing Pei
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|