1
|
Zeng X, Zhang R, Li R, Li R, Cui H, Zhao C, Zhang S, Jin L. Adsorption of rare bases on transition metal doped γ-graphyne nanosheets: a DFT study. Phys Chem Chem Phys 2024; 26:25208-25221. [PMID: 39315582 DOI: 10.1039/d4cp03128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Detection of rare bases (RBs) is key to understanding biological complexity, rapidly diagnosing genetic diseases and advancing personalized medicine. Electrochemical sensors are one of the most promising methods for RB detection, but their low responsiveness limits their effectiveness. Therefore, enhancing selectivity and sensitivity is necessary. γ-Graphyne (γ-GY) has garnered significant attention due to its sp2 and sp hybrid carbon bonds and layered two-dimensional planar structure, as well as its extensive conjugated system, and sizable triangular hole. In this study, the structural characteristics, electronic properties, and sensing parameters of the adsorption involving RBs with both γ-GY and transition metal (Fe, Co, and Ni)-doped γ-graphyne (TM-GY) nanosheets are investigated using density functional theory calculations to evaluate the potential of nanosheets for sequencing RBs in DNA. The result shows that the adsorption interaction between RBs and γ-GY is weak physical adsorption, making it difficult to distinguish RBs. In contrast, the adsorption of RBs with TM-GY is stronger chemisorption and can be completely separated by translocation time and sensing response. Through translocation time calculations, we demonstrate the high selectivity of Ni-GY for RBs. Furthermore, sensitivity analysis reveals that Fe-GY exhibits excellent responsiveness to RBs. Our work reveals that the TM-GY nanosheets hold promise for detecting RBs compared with the γ-GY, and may provide valuable insights for the design of graphyne-based biosensors and catalysts.
Collapse
Affiliation(s)
- Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Ruiying Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Ruirui Li
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Ruimei Li
- School of Mathematics & Computer Science, Hanzhong 723001, China
| | - Hong Cui
- School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Caibin Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemical & Environment Science, Shaanxi University of Technology, Hanzhong 723001, China.
| |
Collapse
|
2
|
Lakshmy S, Kalarikkal N, Chakraborty B. Transition Metal (Cu, Pd, and Ag)-Modified Nb 2S 2C Monolayer for Highly Efficient Catechol Sensing: A First-Principles Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:13819-13833. [PMID: 38912715 DOI: 10.1021/acs.langmuir.4c00631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Motivated by recent advancements and the escalating application of two-dimensional (2D) gas or molecule sensors, this study explores the potential of the 2D Nb2S2C monolayer for detecting biomolecule catechol (Cc), whose excess concentration is highly dangerous to living beings. We use first-principles density functional theory (DFT) calculations to assess the Cc sensing performance of pure and transition metal (TM = Cu, Pd, Ag)-modified Nb2S2C monolayers. The Nb2S2C monolayer belonging to the new class of synthesized 2D materials, TM carbo-chalcogenides (TMCC), combines distinctive properties from both TM dichalcogenides and TM carbides and exhibits physisorption (-0.66 eV) toward the Cc molecule. Notably, the surface modifications with these TMs significantly enhanced the adsorption energy of Cc. The chemisorption of the Cc molecule on the Pd to Cu-modified monolayer is demonstrated with adsorption energies ranging from -1.09 to -1.3 eV and is due to the robust charge transfer and orbital interactions between the valence orbitals of TMs and Cc. In addition, the modification of the surface by TM leads to an increased work function sensitivity toward the Cc molecule. The study establishes the thermal stability at 300 K and dynamic stability of TM-Nb2S2C through ab initio molecular dynamics (AIMD) simulations and Phonon calculations, respectively. The theoretical estimation of achievable recovery time at 400 and 450 K for Pd and Ag and at 500 K for the Cu-modified Nb2S2C monolayer, respectively, confirms the potential practical application of the sensor for Cc detection. These compelling characteristics position the Nb2S2C monolayer as a promising nanomaterial for detecting Cc molecules in the environment.
Collapse
Affiliation(s)
- Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam 686 560, Kerala, India
| | - Brahmananda Chakraborty
- High Pressure & Synchroton Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi J Bhabha National Institute, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
3
|
Lakshmy S, Mane P, Trivedi R, Kalarikkal N, Chakraborty B. Catechol Sensing Performance of Pd-Functionalized Two-Dimensional Polyaramid: A DFT Investigation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2577-2590. [PMID: 38284354 DOI: 10.1021/acs.langmuir.3c02829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Catechol (Cc) molecule adsorption on a pristine and transition metal (TMs = Sc, Pd, and Cu)-functionalized two-dimensional polyaramid (2DPA) monolayer is systematically studied by the first-principles density functional theory method. The weak physisorption (-0.29 eV) and charge transfer of the Cc molecule with p-2DPA result in a very quick recovery time (150 μs), hindering the Cc sensing capability of p-2DPA. Although TM functionalization greatly improved the adsorption ability, the Pd-functionalized 2DPA was shown to be the best choice for Cc adsorption due to the reasonable adsorption energy of -1.39 eV and expedited charge transfer between the Cc and Pd atom. The change of band gap and, hence, the conductivity of the Pd-2DPA system in response to the adsorption of the Cc molecule demonstrate its higher sensitivity than that of p-2DPA. The work function sensitivity of Pd-2DPA upon the Cc adsorption is also investigated. In addition to the change in the electronic properties, the change in the optical properties of Pd-2DPA after Cc adsorption is also analyzed. The structural stability of Pd-2DPA is validated by performing ab initio molecular dynamics simulations at 300 K. The complete desorption of the Cc molecule from Pd-2DPA is attained by annealing the material at 550 K under visible light (τ = 5.4 s) and at 450 K under UV light (τ = 3.7 s). Moreover, the higher diffusion energy barrier of +1.35 eV confirmed that the functionalized Pd atoms did not diffuse through the crystal to form clusters. This study could lay a theoretical foundation for developing possibly new-generation sensors for detecting Cc molecules.
Collapse
Affiliation(s)
- Seetha Lakshmy
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Pratap Mane
- Seismology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ravi Trivedi
- Department of Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
- Centre for Computational Physics, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Nandakumar Kalarikkal
- International and Inter University Centre for Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
- School of Pure and Applied Physics, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
- School of Nanoscience and Nanotechnology, Mahatma Gandhi University, Kottayam, Kerala 686 560, India
| | - Brahmananda Chakraborty
- High Pressure & Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi J Bhabha National Institute, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| |
Collapse
|
4
|
Dewangan J, Mahamiya V, Shukla A, Chakraborty B. An ab initiostudy of catechol sensing in pristine and transition metal decorated γ-graphyne. NANOTECHNOLOGY 2023; 34:175503. [PMID: 36762606 DOI: 10.1088/1361-6528/acb59d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
Catechol is a toxic biomolecule due to its low degradability to the ecosystem and unpredictable impact on human health. In this work, we have investigated the catechol sensing properties of pristine and transition metal (Ag, Au, Pd, and Ti) decoratedγ-graphyne (GY) systems by employing the density functional theory and first-principles molecular dynamics approach. Simulation results revealed that Pd and Ti atom is more suitable than Ag and Au atom for the decoration of the GY structure with a large charge transfer of 0.29e and 1.54e from valence d-orbitals of the Pd/Ti atom to the carbon-2p orbitals of GY. The GY + Ti system offers excellent electrochemical sensing towards catechol with charge donation of 0.14e from catechol O-p orbitals to Ti-d orbitals, while the catechol molecule is physisorbed to pristine GY with only 0.04e of charge transfer. There exists an energy barrier of 5.19 eV for the diffusion of the Ti atom, which prevents the system from metal-metal clustering. To verify the thermal stability of the sensing material, we have conducted the molecular dynamics simulations at 300 K. We have reported feasible recovery times of 2.05 × 10-5s and 4.7 × 102s for sensing substrate GY + Pd and GY + Ti, respectively, at 500 K of UV light.
Collapse
Affiliation(s)
- Juhee Dewangan
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Vikram Mahamiya
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Alok Shukla
- Department of Physics, Indian Institute of Technology Bombay, 400076 Mumbai, India
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Bombay, Mumbai 40085, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|