1
|
Hong J, Zhu Z, Cui L, Wang Z, Hao Y, Tian X, Cheng G. Bone marrow-inspired hydrogel/graphene composite scaffolds to support in vitro expansion of hematopoietic stem cells. J Mater Chem B 2024; 12:2354-2363. [PMID: 38344940 DOI: 10.1039/d3tb02448b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Hematopoietic stem cell (HSC) expansion offers a key strategy to address the source limitation and donor shortages of HSCs for the treatment of various blood disorders. Specific remodeling of the complex bone marrow microenvironment that contributes to efficient in vitro expansion of HSCs remains challenging. Here, inspired by the regions with different stiffness levels in the bone marrow niche, a three dimensional (3D) bone marrow-mimicking composite scaffold created based on gelatin-hyaluronic acid (Gel-HA) hydrogels and graphene foams (GFs) was engineered to support the in vitro expansion of HSCs. The composite scaffold was prepared by forming a photo-cross-linked Gel-HA hydrogel surrounding the GF. The "soft" Gel-HA hydrogel and "stiff" GF replicate the structure and stiffness of the vascular niche and endosteal niche in the bone marrow, respectively. Furthermore, HSCs cultured in the Gel-HA/GF scaffold proliferated well and retained the CD34+CD38- immunophenotype and pluripotency, suggesting that the Gel-HA/GF composite scaffold supported the in vitro expansion of HSCs, maintaining the primitive phenotype and the ability to differentiate into functional blood cells. Thus, the hydrogel/graphene composite scaffold offers a means of facilitating HSC expansion through structurally and mechanically mimicking bone marrow niches, demonstrating great promise for HSC transplantation.
Collapse
Affiliation(s)
- Jing Hong
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Zhanchi Zhu
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Leisha Cui
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Zhaojun Wang
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ying Hao
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| | - Xiaopeng Tian
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou 215006, China
| | - Guosheng Cheng
- School of Nano-Tech and Nano Bionics, University of Science and Technology of China, Hefei 230026, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- Guangdong Institute of Semiconductor Micro-Nano Manufacturing Technology, Foshan 528200, China
| |
Collapse
|
2
|
Wang Y, Sugimura R. Ex vivo expansion of hematopoietic stem cells. Exp Cell Res 2023; 427:113599. [PMID: 37061173 DOI: 10.1016/j.yexcr.2023.113599] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/27/2023] [Accepted: 04/09/2023] [Indexed: 04/17/2023]
Abstract
Hematopoietic stem cells (HSCs) are multipotent progenitor cells that can differentiate into various mature blood cells and immune cells, thus reconstituting hematopoiesis. By taking advantage of the tremendous potential of HSCs, varied hereditary and hematologic diseases are promised to be alleviated or cured. To solve the contradiction between the growing demand for HSCs in disease treatment and the low population of HSCs in both cord blood and bone marrow, ex vivo HSC expansion along with multiple protocols has been investigated for harvesting adequate HSCs over the past two decades. This review surveys the state-of-the-art techniques for ex vivo HSC self-renewal and provides a concise summary of the effects of diverse intrinsic and extrinsic factors on the expansion of HSCs. The remaining challenges and emerging opportunities in the field of HSC expansion are also presented.
Collapse
Affiliation(s)
- Yuan Wang
- Centre for Translational Stem Cell Biology, Hong Kong
| | - Ryohichi Sugimura
- Centre for Translational Stem Cell Biology, Hong Kong; Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong.
| |
Collapse
|