1
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
2
|
Li S, Yang L, Zhao Z, Yang X, Lv H. A polyurethane-based hydrophilic elastomer with multi-biological functions for small-diameter vascular grafts. Acta Biomater 2024; 176:234-249. [PMID: 38218359 DOI: 10.1016/j.actbio.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Thrombosis and intimal hyperplasia (IH) are two major problems faced by the small-diameter vascular grafts. Mimicking the native endothelium and physiological elasticity of blood vessels is considered an ideal strategy. Polyurethane (PU) is suitable for vascular grafts in mechanics because of its molecular designability and elasticity; however, it generally lacks the endothelium-like biofunctions and hydrophilicity. To solve this contradiction, a hydrophilic PU elastomer is developed by crosslinking the hydrophobic hard-segment chains containing diselenide with diaminopyrimidine-capped polyethylene glycol (PEG). In this network, the hydrophobic aggregation occurs underwater due to the uninterrupted hard-segment chains, leading to a significant self-enhancement in mechanics, which can be tailored to the elasticity similar to natural vessels by adjusting the crosslinking density. A series of in vitro studies confirm that the hydrophilicity of PEG and biological activities of aminopyrimidine and diselenide give the PU multi-biological functions similar to the native endothelium, including stable catalytic release of nitric oxide (NO) in the physiological level; anti-adhesion and anti-activation of platelets; inhibition of migration, adhesion, and proliferation of smooth muscle cells (SMCs); and antibacterial effect. In vivo studies further prove the good histocompatibility with both significant reduction in immune response and calcium deposition. STATEMENT OF SIGNIFICANCE: Constructing small-diameter vascular grafts similar to the natural vessels is considered an ideal method to solve the restenosis caused by thrombosis and intimal hyperplasia (IH). Because of the long-term stability, bulk modification is more suitable for implanted materials, however, how to achieve the biofunctions, hydrophilicity, and elasticity simultaneously is still a big challenge. In this work, a kind of polyurethane-based elastomer has been designed and prepared by crosslinking the functional long hard-segment chains with PEG soft segments. The underwater elasticity based on hydration-induced stiffening and the multi-biological functions similar to the native endothelium are compatible with natural vessels. Both in vitro and in vivo experiments demonstrate the potential of this PU as small-diameter vascular grafts.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Zijian Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Jinzhai Road No 96, Hefei 230026, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China; CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, People's Republic of China.
| |
Collapse
|
3
|
Zhao CY, Sheng KJ, Bao T, Shi T, Liu PN, Yan Y, Zheng XL. Commercial and novel anticoagulant ECMO coatings: a review. J Mater Chem B 2023. [PMID: 37183615 DOI: 10.1039/d3tb00471f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Extracorporeal membrane oxygenation (ECMO) is an invasive and last-resort treatment for circulatory and respiratory failure. Prolonged ECMO support can disrupt the coagulation and anticoagulation systems in a patient, leading to adverse consequences, such as bleeding and thrombosis. To address this problem, anticoagulation coatings have been developed for use in ECMO circuits. This article reviews commonly used commercial and novel anticoagulant coatings developed in recent years and proposes a new classification of coatings based on the current state. While commercial coatings have been used clinically for decades, this review focuses on comparing the effectiveness and stability of coatings to support clinical selections. Furthermore, novel anticoagulation coatings often involve complex mechanisms and elaborate design strategies, and this review summarises representative studies on mainstream anticoagulation coatings to provide a point of reference for future studies.
Collapse
Affiliation(s)
- Chang-Ying Zhao
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Kang-Jia Sheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Bao
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
| | - Tao Shi
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Pei-Nan Liu
- Department of Oncology, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yang Yan
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Xing-Long Zheng
- Department of Cardiovascular Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|