1
|
Chu R, Kong J, Gao Q, Yang Y, Pan T, Lu X, Wang Z, Wang Y, He J. Ether bond-modified lipid nanoparticles for enhancing the treatment effect of hepatic fibrosis. Int J Pharm 2025; 671:125192. [PMID: 39824265 DOI: 10.1016/j.ijpharm.2025.125192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/20/2025]
Abstract
Lipid nanoparticle (LNP)-mediated RNA delivery holds significant potential for the treatment of various liver diseases. Ionizable lipids play a crucial role in the formulation of LNPs and directly influence their delivery efficiency. In this study, we introduced an innovative concept by incorporating an ether bond into the hydrophobic tail of ionizable lipids for the first time. Three ionizable lipids, namely, ND-O1, ND-O2, and ND-O3, were synthesized based on 1-octylnonyl 8-[(2-hydroxyethyl)-[8-(nonyloxy)-8-oxooctyl] amino] octanoate (Lipid M). The efficacy of lipids-based LNPs for the delivery of the heat shock protein 47 (HSP47)-targeted siRNA to the liver was investigated. Compared to Lipid M-based LNP (LNP-M), it was observed that ND-O1 based LNP (LNP-O1) exhibited enhanced siRNA transfection efficiency in activated fibroblasts. In the fibrosis mice, LNP-O1 effectively suppressed HSP47 expression by approximately 84%, which was three times more effective than LNP-M, resulting in a significant decrease of collagen deposition and an amelioration of liver fibrosis. These findings highlighted the potential application of ND-O1 as an ionizable lipid for enhancing the efficient delivery of LNPs-delivered siRNA to the liver. Furthermore, this ionizable lipid design strategy offers a promising avenue for the improvement of the LNP delivery system.
Collapse
Affiliation(s)
- Runxuan Chu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Jianglong Kong
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Qiang Gao
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Yani Yang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Ting Pan
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China; Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Xiaohong Lu
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China
| | - Zhefeng Wang
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China.
| | - Yi Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| | - Jun He
- National Advanced Medical Engineering Research Center, China State Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China.
| |
Collapse
|
2
|
Hu X, Wang Y, Wang R, Pu Y, Jin R, Nie Y, Shuai X. The hybrid lipoplex induces cytoskeletal rearrangement via autophagy/RhoA signaling pathway for enhanced anticancer gene therapy. Nat Commun 2025; 16:339. [PMID: 39747218 PMCID: PMC11696071 DOI: 10.1038/s41467-024-55727-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025] Open
Abstract
Delivering plasmid DNA (pDNA) to solid tumors remains a significant challenge due to the requirement for multiple transport steps and the need to promote delivery efficiency. Herein, we present a virus-mimicking hybrid lipoplex, composed of an arginine-rich cationic lipid, hyaluronic acid derivatives coated gold nanoparticles, and pDNA. This system induces cytoskeletal rearrangements through "outside-in" mechanical and "inside-out" biochemical signaling, overcoming intra- and intercellular barriers to enhance pDNA delivery. By modulating autophagy, RhoA signaling, and cytoskeletal dynamics, we achieve a 20-fold increase in gene expression with high tissue specificity in solid tumors. Furthermore, the system is applied to co-deliver a p53 plasmid and an MDM2 inhibitor, demonstrating significant synergistic antitumor effects in hepatocellular and lung carcinomas.
Collapse
Affiliation(s)
- Xueyi Hu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yichun Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Yiyao Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China
| | - Rongrong Jin
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Yu Nie
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, P. R. China.
| | - Xintao Shuai
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, P. R. China
| |
Collapse
|
3
|
Pavlov RV, Akimov SA, Dashinimaev EB, Bashkirov PV. Boosting Lipofection Efficiency Through Enhanced Membrane Fusion Mechanisms. Int J Mol Sci 2024; 25:13540. [PMID: 39769303 PMCID: PMC11677079 DOI: 10.3390/ijms252413540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Gene transfection is a fundamental technique in the fields of biological research and therapeutic innovation. Due to their biocompatibility and membrane-mimetic properties, lipid vectors serve as essential tools in transfection. The successful delivery of genetic material into the cytoplasm is contingent upon the fusion of the vector and cellular membranes, which enables hydrophilic polynucleic acids to traverse the hydrophobic barriers of two intervening membranes. This review examines the critical role of membrane fusion in lipofection efficiency, with a particular focus on the molecular mechanisms that govern lipoplex-membrane interactions. This analysis will examine the key challenges inherent to the fusion process, from achieving initial membrane proximity to facilitating final content release through membrane remodeling. In contrast to viral vectors, which utilize specialized fusion proteins, lipid vectors necessitate a strategic formulation and environmental optimization to enhance their fusogenicity. This review discusses recent advances in vector design and fusion-promoting strategies, emphasizing their potential to improve gene delivery yield. It highlights the importance of understanding lipoplex-membrane fusion mechanisms for developing next-generation delivery systems and emphasizes the need for continued fundamental research to advance lipid-mediated transfection technology.
Collapse
Affiliation(s)
- Rais V. Pavlov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, Moscow 119071, Russia;
| | - Erdem B. Dashinimaev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia;
| | - Pavel V. Bashkirov
- Research Institute for Systems Biology and Medicine, 18 Nauchniy Proezd, Moscow 117246, Russia
| |
Collapse
|
4
|
Xue L, Zhao G, Gong N, Han X, Shepherd SJ, Xiong X, Xiao Z, Palanki R, Xu J, Swingle KL, Warzecha CC, El-Mayta R, Chowdhary V, Yoon IC, Xu J, Cui J, Shi Y, Alameh MG, Wang K, Wang L, Pochan DJ, Weissman D, Vaughan AE, Wilson JM, Mitchell MJ. Combinatorial design of siloxane-incorporated lipid nanoparticles augments intracellular processing for tissue-specific mRNA therapeutic delivery. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01747-6. [PMID: 39354147 DOI: 10.1038/s41565-024-01747-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/08/2024] [Indexed: 10/03/2024]
Abstract
Systemic delivery of messenger RNA (mRNA) for tissue-specific targeting using lipid nanoparticles (LNPs) holds great therapeutic potential. Nevertheless, how the structural characteristics of ionizable lipids (lipidoids) impact their capability to target cells and organs remains unclear. Here we engineered a class of siloxane-based ionizable lipids with varying structures and formulated siloxane-incorporated LNPs (SiLNPs) to control in vivo mRNA delivery to the liver, lung and spleen in mice. The siloxane moieties enhance cellular internalization of mRNA-LNPs and improve their endosomal escape capacity, augmenting their mRNA delivery efficacy. Using organ-specific SiLNPs to deliver gene editing machinery, we achieve robust gene knockout in the liver of wild-type mice and in the lungs of both transgenic GFP and Lewis lung carcinoma (LLC) tumour-bearing mice. Moreover, we showed effective recovery from viral infection-induced lung damage by delivering angiogenic factors with lung-targeted Si5-N14 LNPs. We envision that our SiLNPs will aid in the clinical translation of mRNA therapeutics for next-generation tissue-specific protein replacement therapies, regenerative medicine and gene editing.
Collapse
Affiliation(s)
- Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Xinhong Xiong
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
| | - Zebin Xiao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rohan Palanki
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kelsey L Swingle
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Claude C Warzecha
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Vivek Chowdhary
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Il-Chul Yoon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jingcheng Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jiaxi Cui
- Yangtze Delta Region Institute (Huzhou), University of Electronic Science and Technology of China, Huzhou, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Shi
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Mohamad-Gabriel Alameh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Karin Wang
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, USA
| | - Lili Wang
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Darrin J Pochan
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James M Wilson
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Zhang Y, Gao Z, Yang X, Xu Q, Lu Y. Leveraging high-throughput screening technologies in targeted mRNA delivery. Mater Today Bio 2024; 26:101101. [PMID: 38883419 PMCID: PMC11176929 DOI: 10.1016/j.mtbio.2024.101101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/18/2024] Open
Abstract
Messenger ribonucleic acid (mRNA) has emerged as a promising molecular preventive and therapeutic approach that opens new avenues for healthcare. Although the use of delivery systems, especially lipid nanoparticles (LNPs), greatly improves the efficiency and stability of mRNA, mRNA tends to accumulate in the liver and hardly penetrates physiological barriers to reach the target site after intravenous injection. Hence, the rational design of targeting strategies aimed at directing mRNA to specific tissues and cells remains an enormous challenge in mRNA therapy. High-throughput screening (HTS) is a cutting-edge targeted technique capable of synthesizing chemical compound libraries for the large-scale experiments to validate the efficiency of mRNA delivery system. In this review, we firstly provide an overview of conventional low-throughput targeting strategies. Then the latest advancements in HTS techniques for mRNA targeted delivery, encompassing optimizing structures of large-scale delivery vehicles and developing large-scale surface ligands, as well as the applications of HTS techniques in extrahepatic systemic diseases are comprehensively summarized. Moreover, we illustrate the selection of administration routes for targeted mRNA delivery. Finally, challenges in the field and potential solutions to tackle them are proposed, offering insights for future development toward mRNA targeted therapy.
Collapse
Affiliation(s)
- Yuchen Zhang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Zhifei Gao
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Xiao Yang
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Qinglong Xu
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| | - Yao Lu
- Department of Joint and Orthopedics, Orthopedic Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
- The Second School of Clinical Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, 510282, China
| |
Collapse
|
6
|
He T, Wang Y, Wang R, Yang H, Hu X, Pu Y, Yang B, Zhang J, Li J, Huang C, Jin R, Nie Y, Zhang X. Fibrous topology promoted pBMP2-activated matrix on titanium implants boost osseointegration. Regen Biomater 2023; 11:rbad111. [PMID: 38173764 PMCID: PMC10761207 DOI: 10.1093/rb/rbad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
Titanium (Ti) implants have been extensively used after surgical operations. Its surface bioactivity is of importance to facilitate integration with surrounding bone tissue, and ultimately ensure stability and long-term functionality of the implant. The plasmid DNA-activated matrix (DAM) coating on the surface could benefit osseointegration but is still trapped by poor transfection for further application, especially on the bone marrow mesenchymal stem cells (BMSCs) in vivo practical conditions. Herein, we constructed a DAM on the surface of fibrous-grained titanium (FG Ti) composed of phase-transition lysozyme (P) as adhesive, cationic arginine-rich lipid (RLS) as the transfection agent and plasmid DNA (pDNA) for bone morphology protein 2 (BMP2) expression. The cationic lipid RLS improved up to 30-fold higher transfection than that of commercial reagents (Lipofectamine 2000 and polyethyleneimine) on MSC. And importantly, Ti surface topology not only promotes the DAM to achieve high transfection efficiency (∼75.7% positive cells) on MSC due to the favorable combination but also reserves its contact induction effect for osteoblasts. Upon further exploration, the fibrous topology on FG Ti could boost pDNA uptake for gene transfection, and cell migration in MSC through cytoskeleton remodeling and induce contact guidance for enhanced osteointegration. At the same time, the cationic RLS together with adhesive P were both antibacterial, showing up to 90% inhibition rate against Escherichia coli and Staphylococcus aureus with reduced adherent microorganisms and disrupted bacteria. Finally, the FG Ti-P/pBMP2 implant achieved accelerated bone healing capacities through highly efficient gene delivery, aligned surface topological structure and increased antimicrobial properties in a rat femoral condylar defect model.
Collapse
Affiliation(s)
- Ting He
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yichun Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Ruohan Wang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Huan Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xueyi Hu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yiyao Pu
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Binbin Yang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- Department of the Affiliated Stomatological Hospital of Southwest Medical University, Southwest Medical University, Luzhou 646000, China
| | - Jingyuan Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Juan Li
- State Key Laboratory of Oral Diseases, West China School of Stomatology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Chongxiang Huang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610064, China
| | - Rongrong Jin
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yu Nie
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Centre for Biomaterials/College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
8
|
Chen K, Zhang Z, Fang Z, Zhang J, Liu Q, Dong W, Liu Y, Wang Y, Wang J. Aged-Signal-Eliciting Nanoparticles Stimulated Macrophage-Mediated Programmed Removal of Inflammatory Neutrophils. ACS NANO 2023; 17:13903-13916. [PMID: 37458397 DOI: 10.1021/acsnano.3c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
Excessive infiltration of activated neutrophils is regarded as a predominant cause of tissue injury in neutrophilic inflammation. Although programmed cell death like apoptosis maintains the homeostasis of activated neutrophils, this process is disrupted by an abnormal inflammatory response. Unlike endogenous calreticulin exposed during apoptosis, exogenous calreticulin acts as an "aged" signal and initiates premature macrophage-mediated programmed cell removal (PrCR), which is independent of apoptosis. Here, we report a nano-mediated strategy to stimulate the precise clearance of activated neutrophils initiated with artificial aged signal and alleviated inflammation. Polymeric nanoparticles PC@PLGA were fabricated by cloaking poly(lactic-co-glycolic acid) (PLGA) with a hybrid membrane derived from platelet-derived extracellular vesicles (PEVs, denoted by P) and the calreticulin-expressed membrane obtained from doxorubicin-treated cells (denoted by C). P-selectin in PEVs favors PC@PLGA to anchor activated neutrophils, while calreticulin mimics exogenous "aged" signal secreted by macrophages to trigger PrCR. We showed that PC@PLGA specifically targeted activated neutrophils and misled macrophages to recognize them as "aged" neutrophils and then initiated premature PrCR and prevented proinflammatory response and tissue damage in a mouse model of acute lung injury and severe acute pancreatitis. The collective findings indicate the efficiency of specific elimination of activated neutrophils with exogenous aged signal in improving inflammation therapy.
Collapse
Affiliation(s)
- Kaige Chen
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Zheng Zhang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| | - Ziyuan Fang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jiachen Zhang
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Qian Liu
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wang Dong
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yang Liu
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yucai Wang
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Intelligent Nanomedicine Institute, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, China
| |
Collapse
|