1
|
Shi SS, Li XJ, Ma RN, Shang L, Zhang W, Zhao HQ, Jia LP, Wang HS. A smartphone-based electrochemical POCT for CEA based on signal amplification of Zr 6MOFs. LAB ON A CHIP 2024; 24:367-374. [PMID: 38126214 DOI: 10.1039/d3lc00748k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Carcinoembryonic antigen (CEA) is a biomarker of high expression in cancer cells. Highly sensitive and selective detection of CEA holds significant clinical value in the diagnosis, monitoring and efficacy evaluation of malignant tumors. In this work, a smartphone-based electrochemical point-of-care testing (POCT) platform for the detection of CEA was developed based on a Zr6MOF signal amplification strategy. Ferrocene labeled DNA strands (Fc-DNA) were immobilized on Zr6MOFs to form a Fc-DNA/Zr6MOF signal probe. Double-stranded DNA (dsDNA) formed by complementary DNA (cDNA) and CEA aptamer was assembled on a screen-printed electrode via an Au-S bond. When CEA was added, the aptamer specifically bound with CEA, resulting in the exposure of cDNA. Then, Fc-DNA/Zr6MOF signal probes were introduced on the electrode surface through hybridization between Fc-DNA and cDNA. The detection of CEA was realized by measuring the electrochemical response of Fc. The POCT device was made by connecting a modified electrode with a smartphone through a Sensit Smart USB flash disk. Due to the signal amplification of Zr6MOFs, this POCT platform exhibited high sensitivity, wide linear range, and low detection limit for CEA detection. The developed POCT platform has been used for the detection of CEA in actual human serum samples with satisfactory results.
Collapse
Affiliation(s)
- Shan-Shan Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Xiao-Jian Li
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Rong-Na Ma
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Lei Shang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Wei Zhang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Qing Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, Shandong, 250022, P. R. China.
| | - Li-Ping Jia
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| | - Huai-Sheng Wang
- College of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252000, P. R. China.
| |
Collapse
|