1
|
Wu H, Wu A, Liu L, Kuang H, Sun M, Xu C, Xu X. Computerized analysis of haptens for the ultrasensitive and specific detection of Pyriftalid. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134705. [PMID: 38805812 DOI: 10.1016/j.jhazmat.2024.134705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Pyriftalid (Pyr) is one of the most commonly used herbicides and due to its widespread and improper use, it has led to serious pollution of groundwater, soil and other ecosystems, threatening human health. A rapid method to detect Pyr was urgently needed. A high specific monoclonal antibody (mAb) against Pyr with IC50 values of 4.7 ng/mL was obtained by mAb screening technique and method with enhanced matrix effect. The study firstly proposed colloidal gold immunochromatographic test strips (CGIA) for Pyr, which enables rapid qualitative and quantitative determination of a large number of samples anytime and anywhere, so as to effectively monitor Pyr in environment and grain samples. Based on the properties of the desired Pyr antibody, the hapten Pyr-hapten-4 with high structural similarity to Pyr molecule, similar electrostatic potential distribution, and the ability to expose Pyr functional groups was screened out from five different Pyr haptens, which was consistent with mouse antiserum test. The CGIA quickly analyze the Pyr content in positive samples such as water samples, soil samples, paddy samples, brown rice samples within 10 min, the LOD for Pyr by CGIA as low as 1.84 ng/g, the v LOD value as low as 6 ng/g, and the extinction value as low as 25 ng/g. The content of positive samples detected by CGIA was consistent with the quantitative results of LC-MS/MS, the relative accuracy was within the range of 97-103 %. The recovery rate range for Pyr by CGIA was 92.0-99.7 %, and the coefficient of variation was between 1.30-8.56 %. It indicated Pyr-targeted CGIA test strip was an efficient and fast detection method to detect real environment and food samples.
Collapse
Affiliation(s)
- Huihui Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aihong Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Maozhong Sun
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinxin Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Deng S, Tan W, Xiong Y, Xie Z, Zhang J. Selective adsorption of zearalenone by a novel magnetic molecularly imprinted carbon nanomaterial. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30484-30496. [PMID: 38607490 DOI: 10.1007/s11356-024-33249-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024]
Abstract
In this paper, the objective is to immobilize molecularly imprinted polymers (MIPs) onto the surface of magnetic carbon nanoparticles (Fe3O4@SiO2@C) to develop an effective method for the adsorption of zearalenone (ZEN). The prepared products were characterized by FT-IR, SEM, TEM, XRD, VSM, TGA, and BET. The content of zearalenone in corn samples was monitored by HPLC. The results indicate that the particle size of magnetic molecularly imprinted polymers (MMIPs) is approximately 200 nm. The adsorption mechanism of MMIPs was confirmed by static adsorption and dynamic adsorption experiments. The maximum adsorption capacity was 1.56 mg/g, and the adsorption equilibrium was reached within 50 min. The scatchard model showed that MMIPs had two binding sites, a high-affinity binding site and a low-affinity site. Kinetic second-order fitting indicates that MMIPs are mainly through chemisorption. In the actual sample application, the limit of detection (LOD) and limit of quantitation (LOQ) were 0.3 mg/L and 0.9 mg/L, respectively. The recovery of corn with the standard addition of ZEN was 73.6-88.1%, and the relative standard deviation (RSD) was 2.86-5.63%. The results demonstrated that MMIPs possess the advantages of straightforward operation, high precision, and cost-effectiveness, rendering them suitable for rapid ZEN detection.
Collapse
Affiliation(s)
- ShaoLin Deng
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - WenYuan Tan
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China.
| | - YaLin Xiong
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - ZhiJin Xie
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| | - Jing Zhang
- School of Chemical Engineering, Sichuan University of Science & Engineering, 180 Xuyuan Street, Huixing Road, Zigong, 643000, China
| |
Collapse
|
3
|
Feng Y, Cheng G, Wang Z, Wu K, Deng A, Li J. Electrochemiluminescence immunosensor based on tin dioxide quantum dots and palladium-modified graphene oxide for the detection of zearalenone. Talanta 2024; 271:125740. [PMID: 38335847 DOI: 10.1016/j.talanta.2024.125740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
Developing low-cost and efficient methods to enhance the electrochemiluminescence (ECL) intensity of luminophores is highly desirable and challenging. Herein, we developed an efficient ECL system based on palladium-modified graphene oxide as a substrate and tin dioxide quantum dot-modified spike-like gold-silver alloy as an immunoprobe. Specifically, palladium-modified graphene oxide was rationally selected as the sensor substrate for the attachment of zearalenone antigens while facilitating the amplification of the ECL signal through enhanced electron transfer efficiency. A spike-like gold-silver alloy modified with tin dioxide quantum dots was attached to the zearalenone antibody as an immunoprobe, and the sensor exhibited remarkable sensitivity due to the exceptional ECL performance of the quantum dots. To demonstrate the practical feasibility of the principle, zearalenone levels were detected in actual samples of maize and pig urine, and the sensor showed a broad linear range (0.0005-500 ng mL-1) and low detection limit (0.16 pg mL-1) in the high-sensitivity detection of Zearalenone. Overall, this work first reports the construction of a highly sensitive ECL immunosensor for the detection of zearalenone using a protruding gold-silver alloy modified with tin dioxide as an immunoprobe and a palladium modified graphene oxide as a substrate. It provides a novel approach for the detection of small molecule toxin-like substances.
Collapse
Affiliation(s)
- Yuze Feng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Gaobiao Cheng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Zhe Wang
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Kang Wu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
4
|
Peng L, Qian X, Jin Y, Miao X, Deng A, Li J. Ultrasensitive detection of zearalenone based on electrochemiluminescent immunoassay with Zr-MOF nanoplates and Au@MoS 2 nanoflowers. Anal Chim Acta 2024; 1299:342451. [PMID: 38499431 DOI: 10.1016/j.aca.2024.342451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
In this work, an effective competitive-type electrochemiluminescence (ECL) immunosensor was constructed for zearalenone determination by using Zr-MOF nanoplates as the ECL luminophore and Au@MoS2 nanoflowers as the substrate material. Zr-MOF have an ultra-thin sheet-like structure that accelerates the transfer of electrons, ions and co-reactant intermediates, which exhibited strong and stable anodic luminescence. The three-dimensional Au@MoS2 nanoflowers would form a thin film modification layer on the glassy carbon electrode (GCE). And its good electrical conductivity and higher specific surface area utilization further improving the sensitivity of the ECL immunosensor. Under the optimized conditions, the proposed immunosensor exhibited satisfactory stability, sensitivity and accuracy, and its ECL signal was proportional to the logarithm of ZEN concentration (0.0001-100 ng/mL) and the limit of detection (LOD) was 0.034 pg/mL. In addition, the results of recovery experiment acquired for wheat flour and pig urine samples further proved the feasibility of the immunosensor for the detection of real samples, indicating its potential for ultrasensitive detection of ZEN.
Collapse
Affiliation(s)
- Lu Peng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Xinyue Qian
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China
| | - Ya Jin
- Department of Biomedical and Pharmaceutical Sicences, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China
| | - Xiangyang Miao
- Department of Biomedical and Pharmaceutical Sicences, Suzhou Chien-shiung Institute of Technology, Taicang, 215411, PR China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, PR China.
| |
Collapse
|
5
|
Zeng X, Li J, Xu L, Deng A, Li J. Development of a flow injection chemiluminescence immunoassay based on DES-mediated CuCo 2O 4 nanoenzyme for ultrasensitive detection of zearalenone in foods. Mikrochim Acta 2024; 191:175. [PMID: 38436786 DOI: 10.1007/s00604-024-06242-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
Nanoenzymes have been widely used to construct biosensors because of their cost-effectiveness, high stability, and easy modification. At the same time, the discovery of deep eutectic solvents (DES) was a great breakthrough in green chemistry, and their combination with different materials can improve the sensing performance of biosensors. In this work, we report an immunosensor using CuCo2O4 nanoenzyme combined with flow injection chemiluminescence immunoassay for the automated detection of zearalenone (ZEN). The immunosensor exhibited excellent sensing performance. Under the optimal conditions, the detection range of ZEN was 0.0001-100 ng mL-1, and the limit of detection (LOD) was 0.076 pg mL-1 (S/N = 3). In addition, the immunosensor showed excellent stability with a relative standard deviation (RSD) of 2.65% for 15 repetitive injections. The method has been successfully applied to the analysis of real samples with satisfactory recovery results, and can hence provide a reference for the detection of small molecules in food and feed.
Collapse
Affiliation(s)
- Xinziwei Zeng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jiao Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China
| | - Lingyun Xu
- Analysis and Testing Center, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Anping Deng
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Jianguo Li
- The Key Lab of Health Chemistry & Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering & Materials Science, Soochow University, Suzhou, 215123, People's Republic of China.
| |
Collapse
|