1
|
Wang B, Lu T, Wang Z, Chang W, Liu L, Li J. Ultrasound-Assisted Remote Benzylic C(sp 3)-H Alkylation of N-Fluoroamides with Enol Silanes. J Org Chem 2024; 89:16473-16484. [PMID: 39508383 DOI: 10.1021/acs.joc.4c01728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We have developed an ultrasound-assisted remote benzylic C(sp3)-H alkylation of N-fluorobenzamides with enol silanes; a series of β-aryl substituted propiophenones was generated in good to high yields. This reaction represents a formal C(sp3)-C(sp3) coupling and features simplicity, high efficiency, and wide substrate scope in a multiple-step sequential process, which involves N-F homolysis, 1,5-hydrogen atom transfer, benzylic radical addition, oxidation by copper(II) salt, and removal of the trimethylsilyl group. Also, DFT theoretical calculations and Marcus theory were employed to consolidate the proposed reaction mechanism.
Collapse
Affiliation(s)
- Boyi Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Tianyu Lu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Ziyu Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Weixing Chang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Lingyan Liu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
| | - Jing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, National Engineering Research Center of Pesticide, Nankai University; College of Chemistry, Nankai University, Weijin Road 94#, Nankai District, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
2
|
Das KK, Hajra A. Non-directed oxidative annulation of 2-arylindazoles with electron deficient olefins via visible light photocatalysis. Chem Commun (Camb) 2024; 60:10402-10405. [PMID: 39224066 DOI: 10.1039/d4cc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new visible-light-mediated non-directed oxidative annulation between 2-arylindazoles and electron-deficient olefins using commercially available piperidine-1-sulfonyl chloride as the radical precursor to afford fused 5,6-dihydroindazolo[2,3-a]quinolines has been developed under mild reaction conditions. This transformation occurs via two consecutive C-H bond functionalizations. The mechanistic investigation results indicate that the reaction progresses through a radical pathway forming a 2-(2-aryl-2H-indazol-3-yl)-3-piperidin-1-ylsulfonyl derivative as an intermediate.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|
3
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
4
|
Zhong LJ, Chen H, Shang X, Fan JH, Tang KW, Liu Y, Li JH. Photoredox Ring Opening 1,2-Alkylarylation of Alkenes with Sulfonium Salts Toward Thioether-Substituted Oxindoles. J Org Chem 2024; 89:8721-8733. [PMID: 38832808 DOI: 10.1021/acs.joc.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A novel strategy for the difunctionalization of electron-deficient alkenes with aryl sulfonium salts to access remote sulfur-containing oxindole derivatives by using in situ-formed copper(I)-based complexes as a photoredox catalyst is presented. This method enables the generation of the C(sp3)-centered radicals through site selective cleavage of the C-S bond of aryl sulfonium salts under mild conditions. Moreover, the oxidation reactions of desired products provide a new strategy for the preparation of sulfoxide or sulfone-containing compounds. Importantly, this approach can be easily applied to late-stage modification of pharmaceuticals molecules.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Das KK, Hajra A. Silylation of 2 H-indazoles by photoinduced hydrogen atom transfer catalysis. Org Biomol Chem 2024; 22:1034-1037. [PMID: 38197231 DOI: 10.1039/d3ob01925j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
A metal-free, visible-light-mediated C-H silylation of 2H-indazoles with triphenylsilane has been developed employing 4CzIPN as a photocatalyst and triisopropylsilanethiol as a hydrogen atom transfer (HAT) reagent under aerobic reaction conditions. This method shows tolerance toward many functional groups and affords a variety of silylated indazoles at up to 89% yield. The experimental results suggest that the reaction progresses through a radical pathway.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India.
| |
Collapse
|