1
|
An G, Wu C, Chai Y, Xu S, Xu Q. Zero-valent Transition Metal Intercalation into 2D Materials: Electronic Structure Modulation and Applications. Chemphyschem 2024:e202400971. [PMID: 39643838 DOI: 10.1002/cphc.202400971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/09/2024]
Abstract
With state-of-the-art modulation of the electronic structure, novel physiochemical properties are anticipated for two-dimensional (2D) materials for a wide variety of potential applications. Due to the presence of charge transfer from transition metal guests and 2D material hosts, intercalation of zero-valent transition metal atoms into the van-der Waals gap of 2D materials are ideal approach to tuning the electronic structure of 2D materials. In this paper, several electronic structure and activity investigations of zero-valent transition metal intercalations of 2D materials, as well as the general concepts behind the experimental exploration were introduced. Specifically, the transition metal intercalation render 2D materials novel physicochemical properties with potential applications ranges from electrocatalysis, small molecule identification to spintronics. Based on the works and concepts introduced in this paper, several challenges and opportunities related to this field were proposed from our perspective.
Collapse
Affiliation(s)
- Guangyu An
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Chuang Wu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Yarong Chai
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Song Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
| | - Qun Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450003, P. R. China
- College of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450003, P. R. China
| |
Collapse
|
2
|
Zhao D, Gao B, An G, Xu S, Tian Q, Xu Q. Copper Intercalation Induces Amorphization of 2D Cu/WO 3 for Room-Temperature Ferromagnetism. Angew Chem Int Ed Engl 2024; 63:e202412811. [PMID: 39073271 DOI: 10.1002/anie.202412811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Ferromagnetism in the two-dimensional limit has become an intriguing topic for exploring new physical phenomena and potential applications. To induce ferromagnetism in 2D materials, intercalation has been proposed to be an effective strategy, which could introduce lattice distortion and unpaired spin into the material to modulate the magnetocrystalline anisotropy and magnetic exchange interactions. To strengthen the understanding of the magnetic origin of 2D material, Cu was introduced into a 2D WO3 through chemical intercalation in this work (2D Cu/WO3). In contrast to the diamagnetic nature of Cu and WO3, room-temperature ferromagnetism was characterized for 2D Cu/WO3. Experimental and theoretical results attribute the ferromagnetism to the bound magnetic polaron in 2D Cu/WO3, which is consist of unpaired spins from W5+/W4+ with localized carriers from oxygen vacancies. Overall, this work provides a novel approach to introduce ferromagnetism into diamagnetic WO3, which could be applied for a wider scope of 2D materials.
Collapse
Affiliation(s)
- Duanduan Zhao
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Bo Gao
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Guangyu An
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Song Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qingyong Tian
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
| | - Qun Xu
- College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, China
- College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
4
|
Yan T, Jia Y, Hou K, Gui Z, Zhang W, Du K, Pan D, Li H, Shi Y, Qi L, Gao Q, Zhang Y, Tang Y. Highly efficient hydrodesulfurization driven by an in-situ reconstruction of ammonium/amine intercalated MoS 2 catalysts. iScience 2024; 27:109824. [PMID: 38779484 PMCID: PMC11109011 DOI: 10.1016/j.isci.2024.109824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Hydrodesulfurization (HDS) is a commonly used route for producing clean fuels in modern refinery. Herein, ammonium/amine-intercalated MoS2 catalysts with various content of 1T phase and S vacancies have been successfully synthesized. Along with the increment of 1T phase and S vacancies of MoS2, the initial reaction rate of the HDS of dibenzothiophene (DBT) can be improved from 0.09 to 0.55 μmol·gcat-1·s-1, accounting for a remarkable activity compared to the-state-of-the-art catalysts. In a combinatory study via the activity evaluation and catalysts characterization, we found that the intercalation species of MoS2 played a key role in generating more 1T phase and S vacancies through the 'intercalation-deintercalation' processes, and the hydrogenation and desulfurization of HDS can be significantly promoted by 1T phase and S vacancies on MoS2, respectively. This study provides a practically meaningful guidance for developing more advanced HDS catalysts by the intercalated MoS2-derived materials with an in-depth understanding of structure-function relationships.
Collapse
Affiliation(s)
- Tianlan Yan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yingshuai Jia
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Kaige Hou
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Zhuxin Gui
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Wenbiao Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Ke Du
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Di Pan
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - He Li
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yanghao Shi
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Lu Qi
- School of Petrochemical Engineering, and, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, Jiangsu 213164, P.R. China
| | - Qingsheng Gao
- College of Chemistry and Materials Science, and, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P.R. China
| | - Yahong Zhang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| | - Yi Tang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, and, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, P.R. China
| |
Collapse
|
5
|
Wang H, An G, Xu S, Xu Q. Fe and Cu Intercalations Enhance SERS of MoO 3 through Different Mechanistic Pathways. Chemistry 2023:e202303391. [PMID: 38116857 DOI: 10.1002/chem.202303391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Surface Enhanced Raman spectroscopy (SERS) is a molecular-specific analytical technique with various applications. Although electromagnetic (EM) and chemical (CM) mechanisms have been proposed to be the main origins of SERS, exploring highly sensitive SERS substrates with well-defined mechanistic pathways remains challenging. Since surface and electronic structures of substrates were crucial for SERS activity, zero-valent transition metals (Fe and Cu) were intercalated into MoO3 to modulate its surface and electronic structures, leading to unexceptional high enhancement factors (1.0×108 and 1.1×1010 for Fe-MoO3 and Cu-MoO3 , respectively) with decent reproducibility and stability. Interestingly, different mechanistic pathways (CM and EM) were proposed for Fe-MoO3 and Cu-MoO3 according to mechanistic investigations. The different mechanisms of Fe-MoO3 and Cu-MoO3 were rationalized by the electronic structures of the intercalated Fe(0) and Cu(0), which modulates the surface and electronic structures of Fe-MoO3 and Cu-MoO3 to differentiate their SERS mechanisms.
Collapse
Affiliation(s)
- Hengan Wang
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Guangyu An
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Song Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Qun Xu
- Hengan Wang, Guangyu An, Dr. Song Xu, Prof. Qun Xu, College of Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- Prof. Qun Xu, School of Material Science and Engineering, Zhengzhou University, Zhengzhou, 450052, P. R. China
| |
Collapse
|