1
|
Yamini P, Junaid M, Yadagiri D. Light-Induced Transformations of Donor-Donor Diazo Compounds Derived from N-Sulfonylhydrazones. Chem Asian J 2024:e202401239. [PMID: 39579064 DOI: 10.1002/asia.202401239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
The donor-donor carbene chemistry field is underdeveloped and often relies on harsh reaction conditions, utilizing either thermal or oxidative process with or without transition-metal catalysts. In this review, we discussed the synthesis and transformation of donor-donor diazo compounds from N-sulfonylhydrazones in the presence of light and base. The N-sulfonylhydrazones are easily accessible from the corresponding carbonyl compounds and sulfonyl hydrazides through condensation. The in situ generated N-sulfonyl anion in the presence of base would undergo the N-S bond cleavage with the aid of light to generate the donor-donor diazo compounds. The donor-donor diazo compounds showed various reactivity in the presence of light for the C-C and C-X bond formation, cyclopropanation reactions, and synthesis of nitrogen, oxygen-containing heterocyclic compounds, which all are discussed under metal-free conditions.
Collapse
Affiliation(s)
- Pokhriyal Yamini
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| |
Collapse
|
2
|
Faure C, Benmaouche S, Belmont P, Brachet E, Lamaa D. N-H Insertion of Anilines on N-Tosylhydrazones Induced by Visible Light Irradiation. J Org Chem 2024; 89:11620-11630. [PMID: 39056462 DOI: 10.1021/acs.joc.4c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Diazo compounds and their precursors represent an interesting chemical category for organic synthesis. Particularly, N-tosylhydrazones have attracted attention for their easy accessibility and diverse reactivity, including carbene transfer reactions. We described a visible light-induced N-H insertion reaction of anilines on in situ-generated diazo compounds. Optimal conditions using DBU in toluene efficiently yielded the desired products. Mechanistic studies enabled us to trap a carbene intermediate that plays a key role in the transformation.
Collapse
Affiliation(s)
- Clara Faure
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Salim Benmaouche
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Philippe Belmont
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Etienne Brachet
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| | - Diana Lamaa
- Université Paris Cité, UMR 8038 CNRS, Faculté de Pharmacie, F-75006 Paris, France
| |
Collapse
|
3
|
Han X, Zhang N, Li Q, Zhang Y, Das S. The efficient synthesis of three-membered rings via photo- and electrochemical strategies. Chem Sci 2024:d4sc02512a. [PMID: 39156935 PMCID: PMC11325197 DOI: 10.1039/d4sc02512a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Three-membered rings, such as epoxides, aziridines, oxaziridines, cyclopropenes, vinyloxaziridines, and azirines, are recognized as crucial pharmacophores and building blocks in organic chemistry and drug discovery. Despite the significant advances in the synthesis of these rings through photo/electrochemical methods over the past decade, there has currently been no focused discussion and updated overviews on this topic. Therefore, we presented this review article on the efficient synthesis of three-membered rings using photo- and electrochemical strategies, covering the literature since 2015. In this study, a conceptual overview and detailed discussions were provided to illustrate the advancement of this field. Moreover, a brief discussion outlines the current challenges and opportunities in synthesizing the three-membered rings using these strategies.
Collapse
Affiliation(s)
- Xinyu Han
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Na Zhang
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji University School of Medicine Shanghai China
| | - Qiannan Li
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine No. 1200, Cailun Road Shanghai 201203 China
- School of Chemistry and Chemical Engineering, Henan Normal University Xinxiang Henan 453007 People's Republic of China
| | - Shoubhik Das
- Department of Chemistry, University of Bayreuth Bayreuth 95447 Germany
| |
Collapse
|
4
|
Alfano AI, Smyth M, Wharry S, Moody TS, Nuño M, Butters C, Baumann M. Multiphase photochemistry in flow mode via an integrated continuous stirred tank reactor (CSTR) approach. Chem Commun (Camb) 2024; 60:7037-7040. [PMID: 38895750 DOI: 10.1039/d4cc02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A new photochemical CSTR system capable of handling solids in scaled continuous processes is presented. High-power UV-LEDs are integrated in these CSTRs containing an insoluble base that aids in generating pyrazolines via cycloaddition between alkenes and in situ generated diazo species. Contrary to reported batch methods product degradation via ring contraction is suppressed whilst generating gram quantities of spirocyclic pyrazolines.
Collapse
Affiliation(s)
| | - Megan Smyth
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Scott Wharry
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
| | - Thomas S Moody
- Almac Sciences, Technology Department, Craigavon BT63 5QD, UK
- Arran Chemical Company, Monksland Industrial Estate, Roscommon N37 DN24, Ireland
| | - Manuel Nuño
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Chris Butters
- Vapourtec, Fornham St Genevieve, Bury St Edmunds, Suffolk, IP28 6TS, UK
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Dublin 4, Ireland.
| |
Collapse
|
5
|
Xia D, Li T, Ke XY, Wang J, Luan X, Ni SF, Zhang Y, Zhang WD. Acetone Serving as a Solvent and Interaction Partner Promotes the Direct Olefination of N-Tosylhydrazones under Visible Light. J Org Chem 2024; 89:6180-6192. [PMID: 38632865 DOI: 10.1021/acs.joc.4c00184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The photochemistry of noncovalent interactions to promote organic transformations is an emerging approach to providing fresh opportunities in synthetic chemistry. Generally, the external substance is necessary to add as an interaction partner, thereby sacrificing the atom economy of the reaction. Herein, we describe a catalyst-free and noncovalent interaction-mediated strategy to access the olefination of N-tosylhydrazones using acetone as a solvent and an interaction partner. This protocol also features broad substrate scope, excellent functional group compatibility, and mild reaction conditions without transition metals. Moreover, the gram-scale synthesis of olefins and the generation of pharmaceutical intermediates highlighted its practical applicability. Lastly, mechanistic studies indicate that the reaction was initiated via noncovalent interactions between acetone and N-tosylhydrazone anion, which is also supported by density functional theory calculations.
Collapse
Affiliation(s)
- Dingding Xia
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tong Li
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xin-Yan Ke
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Jinxin Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Luan
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou 515063, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai 201203, China
| | - Wei-Dong Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
6
|
Junaid M, Happy S, Yadagiri D. Light-induced arylation (alkylation) of N-sulfonylhydrazones with boronic acids. Chem Commun (Camb) 2024; 60:2796-2799. [PMID: 38362736 DOI: 10.1039/d4cc00161c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Di- and triarylmethanes are an important class of compounds in many fields. Here, we report an efficient light-induced arylation (alkylation) for the synthesis of diarylmethanes, bis(diarylmethyl)benzenes, arylalkylmethanes, and triarylmethanes from readily accessible N-sulfonylhydrazones and aryl/alkylboronic acids with the aid of Cs2CO3. In the presence of light, the synthesis of diarylmethanes was also achieved from aldehydes in a one-pot manner via a three-component approach in good yields. Furthermore, we have demonstrated the synthetic utility by synthesizing organoboron compounds and 2°-alcohol.
Collapse
Affiliation(s)
- Mohammad Junaid
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Sharma Happy
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| | - Dongari Yadagiri
- Department of Chemistry, Laboratory of Organic Synthesis & Catalysis Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India.
| |
Collapse
|
7
|
Valdés-Maqueda Á, López L, Plaza M, Valdés C. Synthesis of substituted benzylboronates by light promoted homologation of boronic acids with N-sulfonylhydrazones. Chem Sci 2023; 14:13765-13775. [PMID: 38075646 PMCID: PMC10699570 DOI: 10.1039/d3sc05678c] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 07/30/2024] Open
Abstract
The synthesis of benzylboronates by photochemical homologation of boronic acids with N-tosylhydrazones under basic conditions is described. The reaction involves the photolysis of the N-tosylhydrazone salt to give a diazoalkane followed by the geminal carboborylation of the diazoalkane. Under the mild reaction conditions, the protodeboronation of the unstable benzylboronic acid is circumvented and the pinacolboronates can be isolated after reaction of the benzylboronic acid with pinacol. The metholodogy has been applied to the reactions of alkylboronic acids with N-tosylhydrazones of aromatic aldehydes and ketones, and to the reactions of arylboronic acids with N-tosylhydrazones of aliphatic ketones. Moreover, the employment of the DBU/DIPEA bases combination allows for homogeneous reactions which have been adapted to photochemical continuous flow conditions. Additionally, the synthetic versatility of boronates enables their further transformation via Csp3-C or Csp3-X bond forming reactions converting this methodology into a novel method for the geminal difunctionalization of carbonyls via N-tosylhydrazones.
Collapse
Affiliation(s)
- Álvaro Valdés-Maqueda
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Manuel Plaza
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica, Instituto Universitario de Química Organometálica "Enrique Moles" and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Oviedo C/Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|