1
|
Zhang Q, Dang X, Cui F, Xiao T. Supramolecular light-harvesting systems utilizing tetraphenylethylene chromophores as antennas. Chem Commun (Camb) 2024; 60:10064-10079. [PMID: 39176422 DOI: 10.1039/d4cc03693j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Efficient utilization of light energy is crucial for various technological applications ranging from solar energy conversion to optoelectronic devices. Supramolecular light-harvesting systems (LHS) have emerged as promising platforms for enhancing light absorption and energy transfer process. In this Feature Article, we highlight the utilization of tetraphenylethylene (TPE) chromophores as antennas in supramolecular assemblies for light harvesting applications. TPE, as an archetypal aggregation-induced emission (AIE) chromophore, offers unique advantages such as high photostability and efficient light-harvesting capabilities upon self-assembly. We discuss the design principles and synthetic strategies employed to construct supramolecular assemblies incorporating TPE chromophores, elucidating their roles as efficient light-harvesting antennas. Furthermore, we delve into the mechanisms governing energy transfer processes within these assemblies, such as Förster resonance energy transfer (FRET). The potential applications of these TPE-based supramolecular systems in various fields, including photocatalysis, reactive oxygen species generation, optoelectronic devices and sensing, are explored. Finally, we provide insights into future directions and challenges in the development of next-generation supramolecular LHSs utilizing TPE chromophores.
Collapse
Affiliation(s)
- Qiaona Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaoman Dang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Fengyao Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tangxin Xiao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Zhou WL, Wu YG, Wang S, Zhang R, Wang LH, Liu J, Xu X. Laponite-activated AIE supramolecular assembly with modulating multicolor luminescence for logic digital encryption and perfluorinated pollutant detection. Biosens Bioelectron 2024; 258:116343. [PMID: 38718636 DOI: 10.1016/j.bios.2024.116343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/14/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China; College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| | - Yun-Ga Wu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Siwei Wang
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Rong Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Li-Hua Wang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jinglin Liu
- College of Chemistry and Materials Science, Inner Mongolia Key Laboratory of Chemistry for Nature Products and Synthesis for Functional Molecules, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Xiufang Xu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, People's Republic of China.
| |
Collapse
|
3
|
Chen D, Xiao T, Monflier É, Wang L. Multi-step FRET systems based on discrete supramolecular assemblies. Commun Chem 2024; 7:88. [PMID: 38637669 PMCID: PMC11026437 DOI: 10.1038/s42004-024-01175-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024] Open
Abstract
Fluorescence resonance energy transfer (FRET) from the excited state of the donor to the ground state of the acceptor is one of the most important fluorescence mechanisms and has wide applications in light-harvesting systems, light-mediated therapy, bioimaging, optoelectronic devices, and information security fields. The phenomenon of sequential energy transfer in natural photosynthetic systems provides great inspiration for scientists to make full use of light energy. In recent years, discrete supramolecular assemblies (DSAs) have been successively constructed to incorporate donor and multiple acceptors, and to achieve multi-step FRET between them. This perspective describes recent advances in the fabrication and application of DSAs with multi-step FRET. These DSAs are categorized based on the non-covalent scaffolds, such as amphiphilic nanoparticles, host-guest assemblies, metal-coordination scaffolds, and biomolecular scaffolds. This perspective will also outline opportunities and future challenges in this research area.
Collapse
Affiliation(s)
- Dengli Chen
- School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Tangxin Xiao
- School of Petrochemical Engineering, Changzhou University, Changzhou, China.
| | - Éric Monflier
- Unité de Catalyse et Chimie du Solide (UCCS), Faculté des Sciences Jean Perrin, Univ. Artois, CNRS, Centrale Lille, Univ. Lille, UMR 8181, Lens, France.
| | - Leyong Wang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Sun G, Li M, Cai L, Zhu J, Tang Y, Yao Y. Carbazole-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation reaction. Chem Commun (Camb) 2024; 60:1412-1415. [PMID: 38205596 DOI: 10.1039/d3cc05405e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A carbazole-based artificial light-harvesting system (LHS) was successfully fabricated based on the supramolecular assembly of AIE-enhanced donor (CTD), water-soluble phosphate-pillar[5]arene (WPP5), and eosin Y (ESY) acceptor. The formed WPP5-CTD possessed remarkable AIE emission, featuring an ideal energy donor for light harvesting. After encapsulation of ESY, the energy of WPP5-CTD was efficiently transferred to ESY in WPP5-CTD-ESY, and the antenna effect was 38.5, which was much higher than that of recently reported LHSs. Notably, WPP5-CTD-ESY was successfully utilized as a photocatalyst to realize the cross-coupling dehydrogenation reaction of diphenylphosphine oxide and benzothiazole derivatives, suggesting great potential for aqueous photocatalytic applications of this LHS.
Collapse
Affiliation(s)
- Guangping Sun
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Menghang Li
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Lijuan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Jinli Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|