1
|
Michelini L, Slaney T, Virk S, Rafic E, Qie LC, Corejova K, Lepage ML, Musolino SF, Oliver AG, Etchenique R, Hong WD, DiLabio GA, Wulff JE. A diazirine's central carbon is sp 2-hybridized, facilitating conjugation to dye molecules. Chem Sci 2025; 16:970-979. [PMID: 39664806 PMCID: PMC11629510 DOI: 10.1039/d4sc06427e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/26/2024] [Indexed: 12/13/2024] Open
Abstract
Diazirines are versatile carbene precursors that are extensively used in biological target identification experiments. However, their photo-activation wavelength (ca. 365 nm) precludes their use in living organisms. Here we show that a reconceptualization of the diazirine hybridization state leads to conjugation of the diazirine motif to longer-wavelength chromophores. In a model diazirine-fluorene conjugate, we are able to achieve direct activation (and subsequent C-H insertion) with >450 nm light for the first time. Two-photon activation using near-IR light is also achieved, suggesting the possibility to prepare new diazirine probes for conducting target identification experiments in deep tissue.
Collapse
Affiliation(s)
- Lorenzo Michelini
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
- Department of Chemistry, Sapienza University of Rome P.le A. Moro 5 00185 Rome Italy
| | - Tanya Slaney
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| | - Seerat Virk
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
| | - Estefanía Rafic
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires CONICET. Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - L Charlie Qie
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Klara Corejova
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Mathieu L Lepage
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
- Fundamental and Applied Heterochemistry Laboratory (UMR CNRS 5069), Paul Sabatier University 31062 Toulouse Cedex 9 France
| | - Stefania F Musolino
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
- XLYNX Materials, Inc. Victoria BC V8P 5C2 Canada
| | - Allen G Oliver
- Molecular Structure Facility, Department of Chemistry and Biochemistry, University of Notre Dame Notre Dame IN 46556 USA
| | - Roberto Etchenique
- Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires CONICET. Pabellón 2, Ciudad Universitaria C1428EHA Buenos Aires Argentina
| | - W David Hong
- Department of Chemistry, University of Liverpool Liverpool L69 7ZD UK
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia Kelowna BC V1V-1V7 Canada
| | - Jeremy E Wulff
- Department of Chemistry, University of Victoria Victoria BC V8W 3V6 Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria Victoria BC V8W 2Y2 Canada
| |
Collapse
|
2
|
Cabanero DC, Rovis T. Low-energy photoredox catalysis. Nat Rev Chem 2025; 9:28-45. [PMID: 39528711 DOI: 10.1038/s41570-024-00663-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
With the advent of photoredox catalysis, new synthetic paradigms have been established with many novel transformations being achieved. Nevertheless, modern photoredox chemistry has several drawbacks, namely, deficiencies in reaction efficiency and scalability. Furthermore, wavelengths of light in excess of the energy required for a chemical reaction are often used. In this Review, we document recent developments of low-energy light-absorbing catalysts and their cognate photochemical methods, advantageously mitigating off-cycle photochemical reactivity of excited-state species in the reaction mixture and improving batch scalability of photochemical reactions. Finally, developments in red-light photoredox catalysis are leading the next-generation applications to polymer science and biochemistry-chemical biology, enabling catalytic reactions within media composites - including mammalian tissue - that are historically recalcitrant with blue-light photoredox catalysis.
Collapse
Affiliation(s)
- David C Cabanero
- Department of Chemistry, Columbia University, New York, NY, USA.
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
Laha D, Bankar OS, Santra S, Navale BS, Ghosh D, Bhat RG. Photosensitizer-Free Photoinduced Ground-State Triplet Carbene-Assisted Persistent Aryloxy Radical Generation via Hydrogen Atom Transfer. Org Lett 2024; 26:8674-8679. [PMID: 39373279 DOI: 10.1021/acs.orglett.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
The traditional intermolecular O-H insertion strategy is typically associated with the reactivity exhibited by the singlet spin state, or it can alter the spin state from triplet to singlet by hydrogen bonding. Herein, we report diazoarylidene succinimide that generates a persistent ground-state triplet carbene under visible light (Blue LED, 456 nm) without a photosensitizer. This triplet carbene undergoes an intramolecular O-H insertion via hydrogen atom transfer, forming a persistent aryloxy radical without altering its spin state and leading to biologically relevant 2H-chromenes.
Collapse
Affiliation(s)
- Debasish Laha
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Onkar S Bankar
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Balu S Navale
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
- Department of Chemistry, Institute of Science, Nagpur, Maharashtra 440001, India
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata, 2A & 2B Raja S C Mullick Road, Kolkata 700032, India
| | - Ramakrishna G Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Pune, Dr. Homi Bhabha Road, Pashan, 411008 Pune, Maharashtra, India
| |
Collapse
|
4
|
Okanishi Y, Takemoto O, Kawahara S, Hayashi S, Takanami T, Yoshimitsu T. Red-Light-Promoted Radical Cascade Reaction to Access Tetralins and Dialins Enabled by Zinc(II)porphyrin, A Light-Flexible Catalyst. Org Lett 2024; 26:3929-3934. [PMID: 38669286 DOI: 10.1021/acs.orglett.4c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
[5,15-Bis(pentafluorophenyl)-10,20-diphenylporphinato]zinc(II) (1), a metalloporphyrin derivative that was recently reported as an efficient photocatalyst driven by blue LEDs by our group, was found to catalyze a red-light-promoted (630 nm LEDs) radical cascade reaction of N-3-arylpropionyloxyphthalimides with radicophiles including electron-deficient alkenes and alkynes, providing access to a range of functionalized tetralin and dialin derivatives. The radical cascade reaction catalyzed by 1 took place via an oxidative quenching cycle in DMSO, where no sacrificial electron donor was required, uncovering a unique solvent effect capable of promoting the porphyrin catalysis.
Collapse
Affiliation(s)
- Yusuke Okanishi
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Otoki Takemoto
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Sanpou Kawahara
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Satoshi Hayashi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Toshikatsu Takanami
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Takehiko Yoshimitsu
- Division of Pharmaceutical Sciences, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
5
|
Tanimoto H, Adachi R, Tanisawa K, Tomohiro T. Amphos-Mediated Conversion of Alkyl Azides to Diazo Compounds and One-Pot Azide-Site Selective Transient Protection, Click Conjugation, and Deprotective Transformation. Org Lett 2024. [PMID: 38502004 DOI: 10.1021/acs.orglett.4c00566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
A one-pot conversion of alkyl azides to diazo compounds is outlined. After the reaction of α-azidocarbonyl compounds with Amphos, treatment of the resulting phosphazides with silica gel in a wet solvent afforded α-diazo carbonyl products. Through the azido group protection property of Amphos, inter- and intramolecular azide-site selective reactions of azido group protection, click functionalization, and deprotection of the diazo group have been demonstrated in one pot.
Collapse
Affiliation(s)
- Hiroki Tanimoto
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Ryo Adachi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kodai Tanisawa
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Takenori Tomohiro
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|