1
|
Santiwarodom W, Apilardmongkol P, Kuamit T, Parasuk V. Theoretical study of electrochemical reduction of CO 2 to CO using a nickel-N 4-Schiff base complex. Phys Chem Chem Phys 2024; 26:24068-24077. [PMID: 39248005 DOI: 10.1039/d4cp02521k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
The electrochemical reduction (ECR) of CO2 to CO by nickel-N4-Schiff base complexes as catalysts was investigated using density functional theory (DFT). Three nickel complexes, 1-Ni, 2-Ni, and [2-Ni]Me were considered. Two CO2 reduction pathways, i.e., external and internal proton transfer, were proposed and their reaction energy profiles were computed. The external proton transfer pathway which includes three steps has no transition state. The reaction energies for all steps are exothermic and the reaction catalyzed by 1-Ni has the lowest overall reaction energy (-5.72 eV) followed by those by 2-Ni (-5.56 eV) and [2-Ni]Me (-5.54 eV). The internal proton transfer pathway is composed of four steps. The internal proton transfer step (carboxylic formation) includes a transition state. The CO2 reduction by [2-Ni]Me could not proceed via this mechanism, since [2-Ni]Me does not have an NH group in the ligand and 1-Ni has a lower activation energy (0.83 eV), which is in agreement with the experiment. The charge of the pre-adsorption nickel complex seems to be related to the activity of the catalysts. The catalyst with a less positive nickel charge is more active.
Collapse
Affiliation(s)
- Wilasinee Santiwarodom
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Pavee Apilardmongkol
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Thanawit Kuamit
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| | - Vudhichai Parasuk
- Center of Excellence in Computational Chemistry (CECC), Department of Chemistry, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Akogun FS, Judd M, Mort AGC, Malthus SJ, Robb MG, Cox N, Brooker S. Complexes of a Noncyclic Carbazole-based N5-donor Schiff base: Structures, Redox, EPR and Poor Activity as Hydrogen Evolution Electrocatalysts. Inorg Chem 2024; 63:17014-17025. [PMID: 39225072 DOI: 10.1021/acs.inorgchem.4c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A new noncyclic pentadentate N5-donor Schiff-base ligand, HL2Etpyr (1,1'-(3,6-ditert-butyl-9H-carbazole-1,8-diyl)bis(N-(2-(pyridin-2-yl)ethyl)methanimine)), prepared from 1,8-diformyl-3,6-ditertbutyl-carbazole (HUtBu) and two equivalents of 2-(2-pyridyl)ethylamine, along with four tetrafluoroborate complexes, [MIIL2Etpyr](BF4), where M = Co, Ni, Cu, and Zn, and two [CoIIL2EtPyr]·1/2[CoIIX4] complexes where X = NCS or Cl, isolated as solvates, are reported. All six complexes were structurally characterized, revealing the cations to be isostructural, with M(II) in a trigonal bipyramidal N5-donor environment. Only the Zn(II) complex is fluorescent. Cyclic voltammograms of [MIIL2Etpyr](BF4) in MeCN reveal reversible redox processes at positive potentials: 0.61 (Zn), 0.62 (Cu), 0.57 (Ni), and 0.25 V (Co), and for the cobalt complex a second quasi-reversible process occurs at 0.92 V vs Fc+/Fc. EPR data for the first oxidation product clearly demonstrate that the Zn complex undergoes a ligand centered oxidation, and support this being the case for the Ni and Cu complexes, although this is not definitively shown. After both oxidations the EPR data shows that the Co complex is best described as a low spin Co(III)-ligand radical. In the presence of 80 mM acetic acid, controlled potential electrolysis carried out on [MIIL2Etpyr](BF4) at -1.68 V in MeCN shows some electrocatalytic hydrogen evolution reaction (HER) performance in the order Ni(II) > Cu(II) > Co(II) - but the control, Ni(II) tetrafluoroborate, is more active than all three of the complexes.
Collapse
Affiliation(s)
- Folaranmi S Akogun
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Martyna Judd
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Alexandra G C Mort
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Stuart J Malthus
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Matthew G Robb
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| | - Nicholas Cox
- Research School of Chemistry, The Australian National University, Canberra, ACT 0200, Australia
| | - Sally Brooker
- Department of Chemistry and MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Otago, PO Box 56, Dunedin 9054, New Zealand
| |
Collapse
|
3
|
Butburee T, Ponchai J, Khemthong P, Mano P, Chakthranont P, Youngjan S, Phanthasri J, Namuangruk S, Faungnawakij K, Wang X, Chen Y, Zhang L. General Pyrolysis for High-Loading Transition Metal Single Atoms on 2D-Nitro-Oxygeneous Carbon as Efficient ORR Electrocatalysts. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10227-10237. [PMID: 38367256 PMCID: PMC10910467 DOI: 10.1021/acsami.3c18548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/19/2024]
Abstract
Single-atom catalysts (SACs) possess the potential to involve the merits of both homogeneous and heterogeneous catalysts altogether and thus have gained considerable attention. However, the large-scale synthesis of SACs with rich isolate-metal sites by simple and low-cost strategies has remained challenging. In this work, we report a facile one-step pyrolysis that automatically produces SACs with high metal loading (5.2-15.9 wt %) supported on two-dimensional nitro-oxygenated carbon (M1-2D-NOC) without using any solvents and sacrificial templates. The method is also generic to various transition metals and can be scaled up to several grams based on the capacity of the containers and furnaces. The high density of active sites with N/O coordination geometry endows them with impressive catalytic activities and stability, as demonstrated in the oxygen reduction reaction (ORR). For example, Fe1-2D-NOC exhibits an onset potential of 0.985 V vs RHE, a half-wave potential of 0.826 V, and a Tafel slope of -40.860 mV/dec. Combining the theoretical and experimental studies, the high ORR activity could be attributed its unique FeO-N3O structure, which facilitates effective charge transfer between the surface and the intermediates along the reaction, and uniform dispersion of this active site on thin 2D nanocarbon supports that maximize the exposure to the reactants.
Collapse
Affiliation(s)
- Teera Butburee
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Jitprabhat Ponchai
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pongtanawat Khemthong
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Poobodin Mano
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Pongkarn Chakthranont
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Saran Youngjan
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Jakkapop Phanthasri
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Supawadee Namuangruk
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Kajornsak Faungnawakij
- National
Science and Technology Development Agency, National Nanotechnology Center, 111 Thailand Science Park, Pathum Thani 12120, Thailand
| | - Xingya Wang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Yu Chen
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| | - Lijuan Zhang
- Shanghai
Synchrotron Radiation Facility, Shanghai
Advanced Research Institute, Chinese Academy of Sciences (CAS), No. 239, Zhangheng Rd., New Pudong District, Shanghai 201204, P.R. China
| |
Collapse
|