Gómez de Segura D, Corral-Zorzano A, Alcolea E, Moreno MT, Lalinde E. Phenylbenzothiazole-Based Platinum(II) and Diplatinum(II) and (III) Complexes with Pyrazolate Groups: Optical Properties and Photocatalysis.
Inorg Chem 2024;
63:1589-1606. [PMID:
38247362 PMCID:
PMC10806813 DOI:
10.1021/acs.inorgchem.3c03532]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/21/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024]
Abstract
Based on 2-phenylbenzothiazole (pbt) and 2-(4-dimethylaminophenyl)benzothiazole (Me2N-pbt), mononuclear [Pt(pbt)(R'2-pzH)2]PF6 (R'2-pzH = pzH 1a, 3,5-Me2pzH 1b, 3,5-iPr2pzH 1c) and diplatinum (PtII-PtII) [Pt(pbt)(μ-R'2pz)]2 (R'2-pz = pz 2a, 3,5-Me2pz 2b, 3,5-iPr2pz 2c) and [Pt(Me2N-pbt)(μ-pz)]2 (3a) complexes have been prepared. In the presence of sunlight, 2a and 3a evolve, in CHCl3 solution, to form the PtIII-PtIII complexes [Pt(R-pbt)(μ-pz)Cl]2 (R = H 4a, NMe2 5a). Experimental and computational studies reveal the negligible influence of the pyrazole or pyrazolate ligands on the optical properties of 1a-c and 2a,b, which exhibit a typical 3IL/3MLCT emission, whereas in 2c the emission has some 3MMLCT contribution. 3a displays unusual dual, fluorescence (1ILCT or 1MLCT/1LC), and phosphorescence (3ILCT) emissions depending on the excitation wavelength. The phosphorescence is lost in aerated solutions due to sensitization of 3O2 and formation of 1O2, whose determined quantum yield is also wavelength dependent. The phosphorescence can be reversibly photoinduced (365 nm, ∼ 15 min) in oxygenated THF and DMSO solutions. In 4a and 5a, the lowest electronic transitions (S1-S3) have mixed characters (LMMCT/LXCT/L'XCT 4a and LMMCT/LXCT/ILCT 5a) and they are weakly emissive in rigid media. The 1O2 generation property of complex 3a is successfully used for the photooxidation of p-bromothioanisol showing its potential application toward photocatalysis.
Collapse