Cui S, Li G, Xiao X, Wu L, Han L. Design and construction of hollow metal sulfide/selenide core-shell heterostructure arrays for hybrid supercapacitor.
Dalton Trans 2024;
53:5105-5116. [PMID:
38375938 DOI:
10.1039/d3dt04245f]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Transition metal sulfides and selenides are common electrode materials in supercapacitors. However, the slow redox kinetics and structural collapse during charge-discharge cycles of single-component materials have impeded their electrochemical performance. In this study, hollow Co9S8 nanotubes were synthesized through a rational morphology design approach. Subsequently, NiSe2 or Co0.85Se was electrodeposited onto the Co9S8 nanotubes, yielding two core-shell heterostructure arrays, namely, NiSe2@Co9S8 and Co0.85Se@Co9S8. By fully leveraging the advantages and synergistic effects of these dual-phase heterostructures, the NiSe2@Co9S8 and Co0.85Se@Co9S8 configurations demonstrated outstanding areal capacitances of 12.54 F cm-2 and 9.61 F cm-2, respectively, at 2 mA cm-2. When integrated with activated carbon in hybrid supercapacitors, the NiSe2@Co9S8//AC and Co0.85Se@Co9S8//AC devices exhibited excellent energy storage performance, with energy densities of 0.959 mW h at 1.681 mW and 0.745 mW h at 1.569 mW, respectively. Additionally, these hybrid supercapacitors demonstrated remarkable cycling stability, with capacitance retention of 87.5% and 89.5% after 5000 cycles for NiSe2@Co9S8//AC and Co0.85Se@Co9S8//AC, respectively. This study provides a novel approach to the synthesis of multiphase core-shell heterostructures based on metal sulfides and selenides, opening new avenues for future research.
Collapse