1
|
Un Jan Contreras S, Redfern LK, Maguire LW, Promi SI, Gardner CM. Small Interfering RNAs (siRNAs) Negatively Impact Growth and Gene Expression of Environmentally Relevant Bacteria in In Vitro Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:13856-13865. [PMID: 39066708 DOI: 10.1021/acs.est.4c01685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Rising global populations have amplified food scarcity and ushered in the development of genetically modified (GM) crops containing small interference RNAs (siRNAs) that control gene expression to overcome these challenges. The use of RNA interference (RNAi) in agriculture remains controversial due to uncertainty regarding the unintended release of genetic material and downstream nontarget effects, which have not been assessed in environmental bacteria to date. To evaluate the impacts of siRNAs used in agriculture on environmental bacteria, this study assessed microbial growth and viability as well as transcription activity with and without the presence of environmental stressors. Results showed a statistically significant reduction in growth capacity and maximum biomass achieved when bacteria are exposed to siRNAs alone and with additional external stress (p < 0.05). Further transcriptomic analysis demonstrated that nutrient cycling gene activities were found to be consistently and significantly altered following siRNA exposure, particularly among carbon (xylA, FBPase, limEH, Chitinase, rgl, rgh, rgaE, mannanase, ara) and nitrogen (ureC, nasA, narB, narG, nirK) cycling genes (p < 0.05). Decreases in carbon cycling gene transcription profiles were generally significantly enhanced when siRNA exposure was coupled with nutrient or antimicrobial stress. Collectively, findings suggest that certain conditions facilitate the uptake of siRNAs from their surrounding environments that can negatively affect bacterial growth and gene expression activity, with uncertain downstream impacts on ecosystem homeostasis.
Collapse
Affiliation(s)
- S Un Jan Contreras
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, Washington 99164, United States
| | - L K Redfern
- Department of Bioengineering, Civil Engineering, and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Blvd., Fort Myers, Florida 33965, United States
| | - L W Maguire
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - S I Promi
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| | - C M Gardner
- Department of Civil and Environmental Engineering, Washington State University, 405 Spokane St., Pullman, Washington 99164, United States
- Maseeh Department of Civil, Architectural, and Environmental Engineering, University of Texas at Austin, 301E E Dean Keeton St c1700, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Kleemann K, Bolduan P, Battagliarin G, Christl I, McNeill K, Sander M. Molecular Structure and Conformation of Biodegradable Water-Soluble Polymers Control Adsorption and Transport in Model Soil Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1274-1286. [PMID: 38164921 PMCID: PMC10795197 DOI: 10.1021/acs.est.3c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
Water-soluble polymers (WSPs) are used in diverse applications, including agricultural formulations, that can result in the release of WSPs to soils. WSP biodegradability in soils is desirable to prevent long-term accumulation and potential associated adverse effects. In this work, we assessed adsorption of five candidate biodegradable WSPs with varying chemistry, charge, and polarity characteristics (i.e., dextran, diethylaminoethyl dextran, carboxymethyl dextran, polyethylene glycol monomethyl ether, and poly-l-lysine) and of one nonbiodegradable WSP (poly(acrylic acid)) to sand and iron oxide-coated sand particles that represent important soil minerals. Combined adsorption studies using solution-depletion measurements, direct surface adsorption techniques, and column transport experiments over varying solution pH and ionic strengths revealed electrostatics dominating interactions of charged WSPs with the sorbents as well as WSP conformations and packing densities in the adsorbed states. Hydrogen bonding controls adsorption of noncharged WSPs. Under transport in columns, WSP adsorption exhibited fast and slow kinetic adsorption regimes with time scales of minutes to hours. Slow adsorption kinetics in soil may lead to enhanced transport but also shorter lifetimes of biodegradable WSPs, assuming more rapid biodegradation when dissolved than adsorbed. This work establishes a basis for understanding the coupled adsorption and biodegradation dynamics of biodegradable WSPs in agricultural soils.
Collapse
Affiliation(s)
- Kevin Kleemann
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Patrick Bolduan
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Glauco Battagliarin
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Iso Christl
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|