1
|
Tang CG, Wu R, Chen Y, Zhou Z, He Q, Li T, Wu X, Hou K, Kousseff CJ, McCulloch I, Leong WL. A Universal Biocompatible and Multifunctional Solid Electrolyte in p-Type and n-Type Organic Electrochemical Transistors for Complementary Circuits and Bioelectronic Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405556. [PMID: 39021303 DOI: 10.1002/adma.202405556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/20/2024] [Indexed: 07/20/2024]
Abstract
The development of soft and flexible devices for collection of bioelectrical signals is gaining momentum for wearable and implantable applications. Among these devices, organic electrochemical transistors (OECTs) stand out due to their low operating voltage and large signal amplification capable of transducing weak biological signals. While liquid electrolytes have demonstrated efficacy in OECTs, they limit its operating temperature and pose challenges for electronic packaging due to potential leakage. Conversely, solid electrolytes offer advantages such as mechanical flexibility, robustness against environmental factors, and ability to bridge the interface between rigid dry electronics systems and soft wet biological tissues. However, few systems have demonstrated generality and compatibility with a wide range of state-of-the-art organic mixed ionic-electronic conductors (OMIECs). This paper introduces a highly stretchable, flexible, biocompatible, self-healable gelatin-based solid-state electrolyte, compatible with both p- and n-type OMIEC channels while maintaining high performance and excellent stability. Furthermore, this nonvolatile electrolyte is stable up to 120 °C and exhibits high ionic conductivity even in dry environment. Additionally, an OECT-based complementary inverter with a record-high normalized-gain of 228 V-1 and a corresponding ultralow static power consumption of 1 nW is demonstrated. These advancements pave the way for versatile applications ranging from bioelectronics to power-efficient implants.
Collapse
Affiliation(s)
- Cindy G Tang
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ruhua Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yingjun Chen
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhongliang Zhou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Qiang He
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ting Li
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Xihu Wu
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Kunqi Hou
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | - Iain McCulloch
- Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
- Andlinger Center for Energy and the Environment, and Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Wei Lin Leong
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
2
|
Mei T, Liu W, Xu G, Chen Y, Wu M, Wang L, Xiao K. Ionic Transistors. ACS NANO 2024. [PMID: 38285731 DOI: 10.1021/acsnano.3c06190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
Biological voltage-gated ion channels, which behave as life's transistors, regulate ion transport precisely and selectively through atomic-scale selectivity filters to sustain important life activities. By this inspiration, voltage-adaptable ionic transistors that use ions as signal carriers may provide an alternative information processing unit beyond solid-state electronic devices. This review provides a comprehensive overview of the first generation of biomimetic ionic transistors, including their operating mechanisms, device architecture development, and property characterizations. Despite its infancy, significant progress has been made in the applications of ionic transistors in fields such as DNA detection, drug delivery, and ionic circuits. Challenges and prospects of full exploitation of ionic transistors for a broad spectrum of practical applications are also discussed.
Collapse
Affiliation(s)
- Tingting Mei
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Wenchao Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Guoheng Xu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Yuanxia Chen
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Minghui Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Li Wang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| | - Kai Xiao
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Institute of Innovative Materials, Southern University of Science and Technology, Southern University of Science and Technology, Shenzhen 518055, P.R. China
| |
Collapse
|