1
|
Cheng SC, Liou CJ, Wu SJ, Lin CF, Huang TH, Huang WC. Neochlorogenic acid ameliorates allergic airway inflammation by suppressing type 2 immunity and upregulating HO-1 expression. Int Immunopharmacol 2024; 146:113867. [PMID: 39689596 DOI: 10.1016/j.intimp.2024.113867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/21/2024] [Accepted: 12/12/2024] [Indexed: 12/19/2024]
Abstract
Neochlorogenic acid is a natural compound isolated from various fruits and vegetables that has anti-inflammation and anti-oxidative effects in macrophages. Inflammatory immune cells and tracheal epithelial cells can stimulate airway hyperresponsiveness, inflammation, and reactive oxygen species. In this study, we investigated the effect of neochlorogenic acid in ameliorating inflammatory and oxidative responses in asthmatic mice. We used an ovalbumin (OVA)-induced mouse model, treating mice with neochlorogenic acid by intraperitoneal injection. We also treated inflammatory human tracheal epithelial (BEAS-2B) cells with neochlorogenic acid to evaluate inflammatory cytokine levels and oxidative responses. The results demonstrate that neochlorogenic acid attenuated airway hyperresponsiveness, eosinophil infiltration, and goblet cell hyperplasia in the lungs of asthmatic mice. Neochlorogenic acid also reduced type 2 cytokine expression in bronchoalveolar lavage fluid and improved oxidative stress in the lung. Neochlorogenic acid effectively blocked monocyte attachment to adherent BEAS-2B cells, and reduced pro-inflammatory cytokine and reactive oxygen species production in inflammatory BEAS-2B cells. These findings suggest that neochlorogenic acid is a potential immunomodulator that can ameliorate airway hyperresponsiveness and airway inflammation in asthmatic mice.
Collapse
Affiliation(s)
- Shu-Chen Cheng
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City 33303, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan
| | - Chian-Jiun Liou
- Department of Nursing, Division of Basic Medical Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan
| | - Shu-Ju Wu
- Department of Nutrition and Health Sciences, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City 33303, Taiwan; Aesthetic Medical Center, Department of Dermatology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33303, Taiwan
| | - Chwan-Fwu Lin
- Department of Cosmetic Science, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan City 33303, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Guishan Dist., Taoyuan City 33303, Taiwan
| | - Tse-Hung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City 33303, Taiwan; Department of Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan 33303, Taiwan.
| | - Wen-Chung Huang
- Graduate Institute of Health Industry Technology, Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, No.261, Wenhua 1st Rd., Taoyuan City 33303, Taiwan; Division of Allergy, Asthma, and Rheumatology, Department of Pediatrics, Chang Gung Memorial Hospital, Linkou, Taoyuan City 33303, Taiwan; Department of Pediatrics, New Taipei Municipal TuCheng Hospital (Built and Operated by Chang Gung Medical Foundation), New Taipei 23656, Taiwan.
| |
Collapse
|
2
|
Efiong EE, Bazireh H, Fuchs M, Amadi PU, Effa E, Sharma S, Schmaderer C. Crosstalk of Hyperglycaemia and Cellular Mechanisms in the Pathogenesis of Diabetic Kidney Disease. Int J Mol Sci 2024; 25:10882. [PMID: 39456664 PMCID: PMC11507194 DOI: 10.3390/ijms252010882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/27/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024] Open
Abstract
Among all nephropathies, diabetic kidney disease (DKD) is the most common cause of kidney impairment advancement to end-stage renal disease (ESRD). Although DKD has no cure, the disease is commonly managed by strict control of blood glucose and blood pressure, and in most of these cases, kidney function often deteriorates, resulting in dialysis, kidney replacement therapy, and high mortality. The difficulties in finding a cure for DKD are mainly due to a poor understanding of the underpinning complex cellular mechanisms that could be identified as druggable targets for the treatment of this disease. The review is thus aimed at giving insight into the interconnection between chronic hyperglycaemia and cellular mechanistic perturbations of nephropathy in diabetes. A comprehensive literature review of observational studies on DKD published within the past ten years, with 57 percent published within the past three years was carried out. The article search focused on original research studies and reviews published in English. The articles were explored using Google Scholar, Medline, Web of Science, and PubMed databases based on keywords, titles, and abstracts related to the topic. This article provides a detailed relationship between hyperglycaemia, oxidative stress, and various cellular mechanisms that underlie the onset and progression of the disease. Moreover, it also shows how these mechanisms affect organelle dysfunction, resulting in fibrosis and podocyte impairment. The advances in understanding the complexity of DKD mechanisms discussed in this review will expedite opportunities to develop new interventions for treating the disease.
Collapse
Affiliation(s)
- Esienanwan Esien Efiong
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Biochemistry, Faculty of Science, Federal University of Lafia, PMB 146, Lafia 950101, Nigeria
| | - Homa Bazireh
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Faculty of Medicine, Ludwig-Maximilians-University München, 81377 München, Germany
| | - Markéta Fuchs
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Peter Uchenna Amadi
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R3, Canada
- Department of Biochemistry, Imo State University, Owerri 460222, Nigeria
| | - Emmanuel Effa
- Division of Nephrology, Department of Internal Medicine, Faculty of Clinical Sciences, University of Calabar, PMB 1115, Calabar 540271, Nigeria
| | - Sapna Sharma
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Research Center for Environmental Health, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Christoph Schmaderer
- Abteilung für Nephrologie, Klinikum Rechts der Isar, der Technischen Universität München, 81675 München, Germany
| |
Collapse
|
3
|
Le DD, Kim E, Dang T, Lee J, Shin CH, Park JW, Lee SG, Seo JB, Lee M. Chemical Investigation and Regulation of Adipogenic Differentiation of Cultivated Moringa oleifera. Pharmaceuticals (Basel) 2024; 17:1310. [PMID: 39458951 PMCID: PMC11510418 DOI: 10.3390/ph17101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 10/28/2024] Open
Abstract
Background/Objectives: Moringa oleifera is a matrix plant with the high potential to cure several diseases with its medicinal and ethnopharmacological value and nutraceutical properties. In this study, we investigated the chemical and biological properties of this plant cultivated in our local region. Methods: Leaves, roots, seeds, stem bark, and twigs of oleifera were extracted and evaluated bioactivities targeting intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes, and UHPLC-ESI-Orbitrap-MS/MS-Based molecular networking guided isolation and dereplication of metabolites from these extracts. Results: Five extracts of different organs of M. oleifera significantly stimulated intracellular lipid accumulation and adipocyte differentiation in 3T3-L1 preadipocytes in a concentration-dependent manner. These extracts markedly increased the expression of genes related to adipogenesis and lipogenesis. Notably, these extracts promoted peroxisome proliferator-activated receptor γ (PPARγ) activity and the expression of its target genes, including phosphoenolpyruvate carboxykinase, fatty acid-binding protein 4, and perilipin-2. These adipogenic and lipogenic effects of Moringa extracts through the regulation of PPARγ activity suggests their potential efficacy in preventing or treating type 2 diabetes. Furthermore, chemical investigation revealed high contents of phytonutrients as rich sources of secondary metabolites including glycosides, flavones, fatty acids, phenolics, and other compounds. In addition, in silico studies on major components of these extracts revealed the bioavailability of major components through their binding affinity to respective proteins targeting adipocyte differentiation.
Collapse
Affiliation(s)
- Duc Dat Le
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Eunbin Kim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Thinhulinh Dang
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
| | - Jiseok Lee
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Choon Ho Shin
- Suncheonman Moringa Union, Suncheon 57922, Jeonnam, Republic of Korea;
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
| | - Seul-gi Lee
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
- Glocal University Project Team, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea; (E.K.); (J.L.); (J.W.P.)
- Department of Biosciences, Mokpo National University, Muan 58554, Jeonnam, Republic of Korea
| | - Mina Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea; (D.D.L.); (T.D.)
- Department of Natural Cosmetics Science, Graduate School, Sunchon National University, 255 Jungangno, Suncheon 57922, Jeonnam, Republic of Korea;
| |
Collapse
|
4
|
Liang Y, Wu F, Wu D, Zhu X, Gao X, Hu X, Xu F, Ma T, Zhao H, Cao W. Fu Loose Tea Administration Ameliorates Obesity in High-Fat Diet-Fed C57BL/6J Mice: A Comparison with Fu Brick Tea and Orlistat. Foods 2024; 13:206. [PMID: 38254507 PMCID: PMC10815023 DOI: 10.3390/foods13020206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Fu tea is receiving increasing attention for its specific aroma, flavor, and dramatic functional benefits. Herein, we explored the effects and underlying mechanisms of Fu loose tea (FLT), Fu brick tea (FBT), and diet pills (orlistat) on a high-fat diet (HFD)-induced obesity. The results indicated that FLT and FBT administration effectively inhibited weight gain, glucose metabolic dysregulation, fat accumulation in organs, hepatic and kidney injury, and oxidative stress induced by HFD. Additionally, FLT and FBT treatments improved the lipid profiles and reduced the production of proinflammatory cytokines by regulating the expression levels of lipid metabolism- and inflammation-related genes. Furthermore, FLT and FBT ameliorated the gut microbiota dysbiosis in HFD-mice in a dose-dependent relationship by increasing the abundance of family Verrucomicrobiaceae and genus Akkermansia and Turicibacter and simultaneously reducing the abundance of family Erysipelotrichaceae and genus Bifidobacterium; in contrast, orlistat did not exert a regulatory effect on gut microbiota similar to FLT and FBT to improve HFD-induced obesity. KEGG analysis of gut microbiota annotation revealed that "metabolism" was the most enriched category. This study further provides a theoretical basis for FLT and FBT to be potential supplements to alleviate diet-induced obesity.
Collapse
Affiliation(s)
- Yan Liang
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
| | - Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Daying Wu
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xiaofang Zhu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Xin Gao
- Shandong Academy of Agricultural Sciences/National Engineering Research Center of Wheat and Maize/National Key Laboratory of Wheat Breeding, Ministry of Science and Technology/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow & Huai River Valley, Ministry of Agriculture/Shandong Provincial Technology Innovation Center for Wheat, Jinan 250100, China; (D.W.); (X.G.)
| | - Xin Hu
- Key Laboratory of Fu Tea Processing and Utilization, Ministry of Agriculture and Rural Affairs, Xianyang 712044, China; (X.Z.); (X.H.)
- Xianyang Jingwei Fu Tea Co., Ltd., Xianyang 712044, China
| | - Fangrui Xu
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Tianchen Ma
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi’an 710069, China; (Y.L.); (F.W.); (F.X.); (T.M.); (H.Z.)
| |
Collapse
|