1
|
Yoon H, Lee S, Seo J, Sohn I, Jun S, Hong S, Im S, Nam Y, Kim HJ, Lee Y, Chung SM, Kim H. Investigation on Contact Properties of 2D van der Waals Semimetallic 1T-TiS 2/MoS 2 Heterojunctions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12095-12105. [PMID: 38384197 DOI: 10.1021/acsami.3c18982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDCs) are considered promising alternatives to Si as channel materials because of the possibility of retaining their superior electronic transport properties even at atomic body thicknesses. However, the realization of high-performance 2D TMDC field-effect transistors remains a challenge owing to Fermi-level pinning (FLP) caused by gap states and the inherent high Schottky barrier height (SBH) within the metal contact and channel layer. This study demonstrates that high-quality van der Waals (vdW) heterojunction-based contacts can be formed by depositing semimetallic TiS2 onto monolayer (ML) MoS2. After confirming the successful formation of a TiS2/ML MoS2 heterojunction, the contact properties of vdW semimetal TiS2 were thoroughly investigated. With clean interfaces of the TiS2/ML MoS2 heterojunctions, atomic-layer-deposited TiS2 can induce gap-state saturation and suppress FLP. Consequently, compared with conventional evaporated metal electrodes, the TiS2/ML MoS2 heterojunctions exhibit a lower SBH of 8.54 meV and better contact properties. This, in turn, substantially improves the overall performance of the device, including its on-current, subthreshold swing, and threshold voltage. Furthermore, we believe that our proposed strategy for vdW-based contact formation will contribute to the development of 2D materials used in next-generation electronics.
Collapse
Affiliation(s)
- Hwi Yoon
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sangyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jeongwoo Seo
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Inkyu Sohn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sukhwan Jun
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sungjae Hong
- van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Seongil Im
- van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul 03722, Republic of Korea
| | - Yunyong Nam
- Samsung Display Co., Ltd, Yongin-si, Gyeonggi-do 17113, Republic of Korea
| | - Hyung-Jun Kim
- Samsung Display Co., Ltd, Yongin-si, Gyeonggi-do 17113, Republic of Korea
| | - Yujin Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seung-Min Chung
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungjun Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|