1
|
Ahmed SF, Balutowski A, Yang J, Wencewicz TA, Gulick AM. Expanding the Substrate Selectivity of the Fimsbactin Biosynthetic Adenylation Domain, FbsH. ACS Chem Biol 2024; 19:2451-2461. [PMID: 39513969 DOI: 10.1021/acschembio.4c00512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jinping Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, Buffalo, New York 14203, United States
| |
Collapse
|
2
|
Shi K, Li JM, Wang MQ, Zhang YK, Zhang ZJ, Chen Q, Hollmann F, Xu JH, Yu HL. Computation-driven redesign of an NRPS-like carboxylic acid reductase improves activity and selectivity. SCIENCE ADVANCES 2024; 10:eadp6775. [PMID: 39612335 PMCID: PMC11606446 DOI: 10.1126/sciadv.adp6775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Engineering nonribosomal peptide synthetases (NRPSs) has been a "holy grail" in synthetic biology due to their modular nature and limited understanding of catalytic mechanisms. Here, we reported a computational redesign of the "gate-keeper" adenylation domain of the model NRPS-like enzyme carboxylic acid reductases (CARs) by using approximate mechanism-based geometric criteria and the Rosetta energy score. Notably, MabCAR3 mutants ACA-1 and ACA-4 displayed a remarkable improvement in catalytic efficiency (kcat/KM) for 6-aminocaproic acid, up to 101-fold. Furthermore, G418K exhibited an 86-fold enhancement in substrate specificity for adipic acid compared to 6-aminocaproic acid. Our work provides not only promising biocatalysts for nylon monomer biosynthesis but also a strategy for efficient NRPSs engineering.
Collapse
Affiliation(s)
- Kun Shi
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Ju-Mou Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Mu-Qiang Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yi-Ke Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Zhi-Jun Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Qi Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Frank Hollmann
- Department of Biotechnology Institution, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, Netherlands
| | - Jian-He Xu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Hui-Lei Yu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| |
Collapse
|
3
|
Zhang S, Fan S, He H, Zhu J, Murray L, Liang G, Ran S, Zhu YZ, Cryle MJ, He HY, Zhang Y. Cyclic natural product oligomers: diversity and (bio)synthesis of macrocycles. Chem Soc Rev 2024. [PMID: 39584260 DOI: 10.1039/d2cs00909a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Cyclic compounds are generally preferred over linear compounds for functional studies due to their enhanced bioavailability, stability towards metabolic degradation, and selective receptor binding. This has led to a need for effective cyclization strategies for compound synthesis and hence increased interest in macrocyclization mediated by thioesterase (TE) domains, which naturally boost the chemical diversity and bioactivities of cyclic natural products. Many non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) derived natural products are assembled to form cyclodimeric compounds, with these molecules possessing diverse structures and biological activities. There is significant interest in identifying the biosynthetic pathways that produce such molecules given the challenge that cyclodimerization represents from a biosynthetic perspective. In the last decade, many groups have pursued the characterization of TE domains and have provided new insights into this biocatalytic machinery: however, the enzymes involved in formation of cyclodimeric compounds have proven far more elusive. In this review we focus on natural products that involve macrocyclization in their biosynthesis and chemical synthesis, with an emphasis on the function and biosynthetic investigation on the special family of TE domains responsible for forming cyclodimeric natural products. We also introduce additional macrocyclization catalysts, including butelase and the CT-mediated cyclization of peptides, alongside the formation of cyclodipeptides mediated by cyclodipeptide synthases (CDPS) and single-module NRPSs. Due to the interdisciplinary nature of biosynthetic research, we anticipate that this review will prove valuable to synthetic chemists, drug discovery groups, enzymologists, and the biosynthetic community in general, and inspire further efforts to identify and exploit these biocatalysts for the formation of novel bioactive molecules.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shuai Fan
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Haocheng He
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lauren Murray
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Gong Liang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Shi Ran
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yi Zhun Zhu
- School of Pharmacy & State Key Lab. for the Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
| | - Hai-Yan He
- NHC Key Laboratory of Biotechnology for Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- Shenzhen Key Laboratory of Genome Manipulation and Biosynthesis, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
4
|
Zhong W, Budimir ZL, Johnson LO, Parkinson EI, Agarwal V. Activity and Biocatalytic Potential of an Indolylamide Generating Thioesterase. Org Lett 2024; 26:9378-9382. [PMID: 39432510 PMCID: PMC11536411 DOI: 10.1021/acs.orglett.4c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
The chemical synthesis of N-acyl indoles is hindered by the poor nucleophilicity of indolic nitrogen, necessitating the use of strongly basic reaction conditions that encumber elaboration of highly functionalized scaffolds. Herein, we describe the total chemoenzymatic synthesis of the bulbiferamide natural products by the biochemical activity reconstitution of a nonribosomal peptide synthetase assembly line-derived (NRPS-derived) thioesterase that neatly installs the macrocyclizing indolylamide. The enzyme represents a starting point for biocatalytic access to macrocyclic indolylamide peptides and natural products.
Collapse
Affiliation(s)
- Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Zachary L. Budimir
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lucas O. Johnson
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Elizabeth I. Parkinson
- James
Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Borch
Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
5
|
Huang Z, Peng Z, Zhang M, Li X, Qiu X. Structure, Function and Engineering of the Nonribosomal Peptide Synthetase Condensation Domain. Int J Mol Sci 2024; 25:11774. [PMID: 39519324 PMCID: PMC11546977 DOI: 10.3390/ijms252111774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
The nonribosomal peptide synthetase (NRPS) is a highly precise molecular assembly machinery for synthesizing structurally diverse peptides, which have broad medicinal applications. Withinthe NRPS, the condensation (C) domain is a core catalytic domain responsible for the formation of amide bonds between individual monomer residues during peptide elongation. This review summarizes various aspects of the C domain, including its structural characteristics, catalytic mechanisms, substrate specificity, substrate gating function, and auxiliary functions. Moreover, through case analyses of the NRPS engineering targeting the C domains, the vast potential of the C domain in the combinatorial biosynthesis of peptide natural product derivatives is demonstrated.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315800, China; (Z.H.); (Z.P.); (M.Z.); (X.L.)
| |
Collapse
|
6
|
Voitsekhovskaia I, Ho YTC, Klatt C, Müller A, Machell DL, Tan YJ, Triesman M, Bingel M, Schittenhelm RB, Tailhades J, Kulik A, Maier ME, Otting G, Wohlleben W, Schneider T, Cryle M, Stegmann E. Altering glycopeptide antibiotic biosynthesis through mutasynthesis allows incorporation of fluorinated phenylglycine residues. RSC Chem Biol 2024:d4cb00140k. [PMID: 39247680 PMCID: PMC11376024 DOI: 10.1039/d4cb00140k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
Glycopeptide antibiotics (GPAs) are peptide natural products used as last resort treatments for antibiotic resistant bacterial infections. They are produced by the sequential activities of a linear nonribosomal peptide synthetase (NRPS), which assembles the heptapeptide core of GPAs, and cytochrome P450 (Oxy) enzymes, which perform a cascade of cyclisation reactions. The GPAs contain proteinogenic and nonproteinogenic amino acids, including phenylglycine residues such as 4-hydroxyphenylglycine (Hpg). The ability to incorporate non-proteinogenic amino acids in such peptides is a distinctive feature of the modular architecture of NRPSs, with each module selecting and incorporating a desired amino acid. Here, we have exploited this ability to produce and characterise GPA derivatives containing fluorinated phenylglycine (F-Phg) residues through a combination of mutasynthesis, biochemical, structural and bioactivity assays. Our data indicate that the incorporation of F-Phg residues is limited by poor acceptance by the NRPS machinery, and that the phenol moiety normally present on Hpg residues is essential to ensure both acceptance by the NRPS and the sequential cyclisation activity of Oxy enzymes. The principles learnt here may prove useful for the future production of GPA derivatives with more favourable properties through mixed feeding mutasynthesis approaches.
Collapse
Affiliation(s)
- Irina Voitsekhovskaia
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Y T Candace Ho
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Christoph Klatt
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
| | - Anna Müller
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Daniel L Machell
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Yi Jiun Tan
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- Research School of Chemistry, The Australian National University Acton ACT 2601 Australia
| | - Maxine Triesman
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Mara Bingel
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Platform, Monash University Clayton VIC 3800 Australia
| | - Julien Tailhades
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Andreas Kulik
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Martin E Maier
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
| | - Gottfried Otting
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- Research School of Chemistry, The Australian National University Acton ACT 2601 Australia
| | - Wolfgang Wohlleben
- Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
| | - Tanja Schneider
- Institute of Organic Chemistry, University of Tübingen Tübingen Germany
- Institute for Pharmaceutical Microbiology, University Hospital Bonn, University of Bonn Bonn Germany
| | - Max Cryle
- Department of Biochemistry and Molecular Biology, The Monash Biomedicine Discovery Institute, Monash University Clayton VIC 3800 Australia
- EMBL Australia, Monash University Clayton VIC 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
| | - Evi Stegmann
- Microbial Bioactive Compounds, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen Tübingen Germany
- ARC Centre of Excellence for Innovations in Peptide and Protein Science Australia
- German Centre for Infection Research (DZIF), Partner Site Tübingen Tübingen Germany
- Cluster of Excellence 'Controlling Microbes to Fight Infections' (CMFI), University of Tübingen Tübingen Germany
| |
Collapse
|
7
|
Patel KD, Oliver RA, Lichstrahl MS, Li R, Townsend CA, Gulick AM. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain. J Biol Chem 2024; 300:107489. [PMID: 38908753 PMCID: PMC11298585 DOI: 10.1016/j.jbc.2024.107489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/01/2024] [Accepted: 06/12/2024] [Indexed: 06/24/2024] Open
Abstract
Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation, and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain of SulM, which catalyzes an unusual β-lactam-forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the monobactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The position of variant lid helices results in an active site pocket that is quite constrained, a feature that is likely necessary to orient the substrate properly for β-lactam formation. Modeling of a sulfazecin tripeptide into the active site identifies a plausible binding mode identifying potential interactions for the sulfamate and the peptide backbone with Arg2849 and Asn2819, respectively. The overall structure is similar to the β-lactone-forming thioesterase domain that is responsible for similar ring closure in the production of obafluorin. We further use these insights to enable bioinformatic analysis to identify additional, uncharacterized β-lactam-forming biosynthetic gene clusters by genome mining.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, New York, USA
| | - Ryan A Oliver
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | | | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Craig A Townsend
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland, USA
| | - Andrew M Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, New York, USA.
| |
Collapse
|
8
|
Ahmed SF, Balutowski A, Yang J, Wencewicz TA, Gulick AM. Expanding the substrate selectivity of the fimsbactin biosynthetic adenylation domain, FbsH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.26.605314. [PMID: 39091846 PMCID: PMC11291136 DOI: 10.1101/2024.07.26.605314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) produce diverse natural products including siderophores, chelating agents that many pathogenic bacteria produce to survive in low iron conditions. Engineering NRPSs to produce diverse siderophore analogs could lead to the generation of novel antibiotics and imaging agents that take advantage of this unique iron uptake system in bacteria. The highly pathogenic and antibiotic-resistant bacteria Acinetobacter baumannii produces fimsbactin, an unusual branched siderophore with iron-binding catechol groups bound to a serine or threonine side chain. To explore the substrate promiscuity of the assembly line enzymes, we report a structure-guided investigation of the stand-alone aryl adenylation enzyme FbsH. We report on structures bound to its native substrate 2,3-dihydroxybenzoic acid (DHB) as well as an inhibitor that mimics the adenylate intermediate. We produced enzyme variants with an expanded binding pocket that are more tolerant for analogs containing a DHB C4 modification. Wild-type and mutant enzymes were then used in an in vitro reconstitution analysis to assess the production of analogs of the final product as well as several early-stage intermediates. This analysis shows that some altered substrates progress down the fimsbactin assembly line to the downstream domains. However, analogs from alternate building blocks are produced at lower levels, indicating that selectivity exists in the downstream catalytic domains. These findings expand the substrate scope of producing condensation products between serine and aryl acids and identify the bottlenecks for chemoenzymatic production of fimsbactin analogs.
Collapse
Affiliation(s)
- Syed Fardin Ahmed
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| | - Adam Balutowski
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Jinping Yang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Timothy A. Wencewicz
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, United States
| | - Andrew M. Gulick
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, United States
| |
Collapse
|
9
|
Heard SC, Winter JM. Structural, biochemical and bioinformatic analyses of nonribosomal peptide synthetase adenylation domains. Nat Prod Rep 2024; 41:1180-1205. [PMID: 38488017 PMCID: PMC11253843 DOI: 10.1039/d3np00064h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 07/18/2024]
Abstract
Covering: 1997 to July 2023The adenylation reaction has been a subject of scientific intrigue since it was first recognized as essential to many biological processes, including the homeostasis and pathogenicity of some bacteria and the activation of amino acids for protein synthesis in mammals. Several foundational studies on adenylation (A) domains have facilitated an improved understanding of their molecular structures and biochemical properties, in particular work on nonribosomal peptide synthetases (NRPSs). In NRPS pathways, A domains activate their respective acyl substrates for incorporation into a growing peptidyl chain, and many nonribosomal peptides are bioactive. From a natural product drug discovery perspective, improving existing bioinformatics platforms to predict unique NRPS products more accurately from genomic data is desirable. Here, we summarize characterization efforts of A domains primarily from NRPS pathways from July 1997 up to July 2023, covering protein structure elucidation, in vitro assay development, and in silico tools for improved predictions.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jaclyn M Winter
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Owens SL, Ahmed SR, Lang Harman RM, Stewart LE, Mori S. Natural Products That Contain Higher Homologated Amino Acids. Chembiochem 2024; 25:e202300822. [PMID: 38487927 PMCID: PMC11386549 DOI: 10.1002/cbic.202300822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/13/2024] [Indexed: 04/11/2024]
Abstract
This review focuses on discussing natural products (NPs) that contain higher homologated amino acids (homoAAs) in the structure as well as the proposed and characterized biosynthesis of these non-proteinogenic amino acids. Homologation of amino acids includes the insertion of a methylene group into its side chain. It is not a very common modification found in NP biosynthesis as approximately 450 homoAA-containing NPs have been isolated from four bacterial phyla (Cyanobacteria, Actinomycetota, Myxococcota, and Pseudomonadota), two fungal phyla (Ascomycota and Basidiomycota), and one animal phylum (Porifera), except for a few examples. Amino acids that are found to be homologated and incorporated in the NP structures include the following ten amino acids: alanine, arginine, cysteine, isoleucine, glutamic acid, leucine, phenylalanine, proline, serine, and tyrosine, where isoleucine, leucine, phenylalanine, and tyrosine share the comparable enzymatic pathway. Other amino acids have their individual homologation pathway (arginine, proline, and glutamic acid for bacteria), likely utilize the primary metabolic pathway (alanine and glutamic acid for fungi), or have not been reported (cysteine and serine). Despite its possible high potential in the drug discovery field, the biosynthesis of homologated amino acids has a large room to explore for future combinatorial biosynthesis and metabolic engineering purpose.
Collapse
Affiliation(s)
- Skyler L Owens
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shopno R Ahmed
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Rebecca M Lang Harman
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Laura E Stewart
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| | - Shogo Mori
- Department of Chemistry and Biochemistry, Augusta University, 1120 15th Street, Augusta, GA 30912
| |
Collapse
|
11
|
Patel KD, Oliver RA, Lichstrahl MS, Li R, Townsend CA, Gulick AM. The structure of the monobactam-producing thioesterase domain of SulM forms a unique complex with the upstream carrier protein domain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.06.588331. [PMID: 38617275 PMCID: PMC11014566 DOI: 10.1101/2024.04.06.588331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are responsible for the production of important biologically active peptides. The large, multidomain NRPSs operate through an assembly line strategy in which the growing peptide is tethered to carrier domains that deliver the intermediates to neighboring catalytic domains. While most NRPS domains catalyze standard chemistry of amino acid activation, peptide bond formation and product release, some canonical NRPS catalytic domains promote unexpected chemistry. The paradigm monobactam antibiotic sulfazecin is produced through the activity of a terminal thioesterase domain that catalyzes an unusual β-lactam forming reaction in which the nitrogen of the C-terminal N-sulfo-2,3-diaminopropionate residue attacks its thioester tether to release the β-lactam product. We have determined the structure of the thioesterase domain as both a free-standing domain and a didomain complex with the upstream holo peptidyl-carrier domain. The structure illustrates a constrained active site that orients the substrate properly for β-lactam formation. In this regard, the structure is similar to the β-lactone forming thioesterase domain responsible for the production of obafluorin. Analysis of the structure identifies features that are responsible for this four-membered ring closure and enable bioinformatic analysis to identify additional, uncharacterized β-lactam-forming biosynthetic gene clusters by genome mining.
Collapse
Affiliation(s)
- Ketan D. Patel
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Ryan A. Oliver
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218 USA
| | - Michael S. Lichstrahl
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218 USA
| | - Rongfeng Li
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218 USA
| | - Craig A. Townsend
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218 USA
| | - Andrew M. Gulick
- Department of Structural Biology, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| |
Collapse
|
12
|
Peng YJ, Chen Y, Zhou CZ, Miao W, Jiang YL, Zeng X, Zhang CC. Modular catalytic activity of nonribosomal peptide synthetases depends on the dynamic interaction between adenylation and condensation domains. Structure 2024; 32:440-452.e4. [PMID: 38340732 DOI: 10.1016/j.str.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/22/2023] [Accepted: 01/16/2024] [Indexed: 02/12/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multidomain enzymes for the synthesis of a variety of bioactive peptides in a modular and pipelined fashion. Here, we investigated how the condensation (C) domain and the adenylation (A) domain cooperate with each other for the efficient catalytic activity in microcystin NRPS modules. We solved two crystal structures of the microcystin NRPS modules, representing two different conformations in the NRPS catalytic cycle. Our data reveal that the dynamic interaction between the C and the A domains in these modules is mediated by the conserved "RXGR" motif, and this interaction is important for the adenylation activity. Furthermore, the "RXGR" motif-mediated dynamic interaction and its functional regulation are prevalent in different NRPSs modules possessing both the A and the C domains. This study provides new insights into the catalytic mechanism of NRPSs and their engineering strategy for synthetic peptides with different structures and properties.
Collapse
Affiliation(s)
- Ye-Jun Peng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuxing Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Cong-Zhao Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China
| | - Wei Miao
- Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China
| | - Yong-Liang Jiang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, People's Republic of China.
| | - Xiaoli Zeng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China.
| | - Cheng-Cai Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei 430072, People's Republic of China; Key Laboratory of Lake and Watershed Science for Water Security, Chinese Academy of Sciences, Nanjing 210008, People's Republic of China; Hubei Hongshan Laboratory, Wuhan 430070, People's Republic of China.
| |
Collapse
|
13
|
Peng H, Schmiederer J, Chen X, Panagiotou G, Kries H. Controlling Substrate- and Stereospecificity of Condensation Domains in Nonribosomal Peptide Synthetases. ACS Chem Biol 2024; 19:599-606. [PMID: 38395426 PMCID: PMC10949931 DOI: 10.1021/acschembio.3c00678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/30/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Nonribosomal peptide synthetases (NRPSs) are sophisticated molecular machines that biosynthesize peptide drugs. In attempts to generate new bioactive compounds, some parts of NRPSs have been successfully manipulated, but especially the influence of condensation (C-)domains on substrate specificity remains enigmatic and poorly controlled. To understand the influence of C-domains on substrate preference, we extensively evaluated the peptide formation of C-domain mutants in a bimodular NRPS system. Thus, we identified three key mutations that govern the preference for stereoconfiguration and side-chain identity. These mutations show similar effects in three different C-domains (GrsB1, TycB1, and SrfAC) when di- or pentapeptides are synthesized in vitro or in vivo. Strikingly, mutation E386L allows the stereopreference to be switched from d- to l-configured donor substrates. Our findings provide valuable insights into how cryptic specificity filters in C-domains can be re-engineered to clear roadblocks for NRPS engineering and enable the production of novel bioactive compounds.
Collapse
Affiliation(s)
- Huiyun Peng
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Julian Schmiederer
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Xiuqiang Chen
- Department
of Microbiome Dynamics, Leibniz Institute
for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Gianni Panagiotou
- Department
of Microbiome Dynamics, Leibniz Institute
for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Faculty
of Biological Sciences, Friedrich Schiller
University, 07745 Jena, Germany
- Department
of Medicine, The University of Hong Kong, 999999 Hong Kong
SAR, China
| | - Hajo Kries
- Junior
Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and
Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Department
of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany
| |
Collapse
|
14
|
Ishikawa F, Nakamura S, Nakanishi I, Tanabe G. Recent progress in the reprogramming of nonribosomal peptide synthetases. J Pept Sci 2024; 30:e3545. [PMID: 37721208 DOI: 10.1002/psc.3545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) biosynthesize nonribosomal peptide (NRP) natural products, which belong to the most promising resources for drug discovery and development because of their wide range of therapeutic applications. The results of genetic, biochemical, and bioinformatics analyses have enhanced our understanding of the mechanisms of the NRPS machinery. A major goal in NRP biosynthesis is to reprogram the NRPS machinery to enable the biosynthetic production of designed peptides. Reprogramming strategies for the NRPS machinery have progressed considerably in recent years, thereby increasing the yields and generating modified peptides. Here, the recent progress in NRPS reprogramming and its application in peptide synthesis are described.
Collapse
Affiliation(s)
| | | | | | - Genzoh Tanabe
- Faculty of Pharmacy, Kindai University, Osaka, Japan
| |
Collapse
|
15
|
Cox RJ. Engineered and total biosynthesis of fungal specialized metabolites. Nat Rev Chem 2024; 8:61-78. [PMID: 38172201 DOI: 10.1038/s41570-023-00564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 01/05/2024]
Abstract
Filamentous fungi produce a very wide range of complex and often bioactive metabolites, demonstrating their inherent ability as hosts of complex biosynthetic pathways. Recent advances in molecular sciences related to fungi have afforded the development of new tools that allow the rational total biosynthesis of highly complex specialized metabolites in a single process. Increasingly, these pathways can also be engineered to produce new metabolites. Engineering can be at the level of gene deletion, gene addition, formation of mixed pathways, engineering of scaffold synthases and engineering of tailoring enzymes. Combination of these approaches with hosts that can metabolize low-value waste streams opens the prospect of one-step syntheses from garbage.
Collapse
Affiliation(s)
- Russell J Cox
- Institute for Organic Chemistry and BMWZ, Leibniz University of Hannover, Hannover, Germany.
| |
Collapse
|
16
|
Nava A, Roberts J, Haushalter RW, Wang Z, Keasling JD. Module-Based Polyketide Synthase Engineering for de Novo Polyketide Biosynthesis. ACS Synth Biol 2023; 12:3148-3155. [PMID: 37871264 PMCID: PMC10661043 DOI: 10.1021/acssynbio.3c00282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Indexed: 10/25/2023]
Abstract
Polyketide retrobiosynthesis, where the biosynthetic pathway of a given polyketide can be reversibly engineered due to the colinearity of the polyketide synthase (PKS) structure and function, has the potential to produce millions of organic molecules. Mixing and matching modules from natural PKSs is one of the routes to produce many of these molecules. Evolutionary analysis of PKSs suggests that traditionally used module boundaries may not lead to the most productive hybrid PKSs and that new boundaries around and within the ketosynthase domain may be more active when constructing hybrid PKSs. As this is still a nascent area of research, the generality of these design principles based on existing engineering efforts remains inconclusive. Recent advances in structural modeling and synthetic biology present an opportunity to accelerate PKS engineering by re-evaluating insights gained from previous engineering efforts with cutting edge tools.
Collapse
Affiliation(s)
- Alberto
A. Nava
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jacob Roberts
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Zilong Wang
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
- Center
for Synthetic Biochemistry, Shenzhen Institutes
for Advanced Technologies, Shenzhen 518055, P.R. China
- The
Novo
Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
17
|
Patel KD, Gulick AM. Structural and functional insights into δ-poly-L-ornithine polymer biosynthesis from Acinetobacter baumannii. Commun Biol 2023; 6:982. [PMID: 37752201 PMCID: PMC10522769 DOI: 10.1038/s42003-023-05362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
Cationic homo-polyamino acid (CHPA) peptides containing isopeptide bonds of diamino acids have been identified from Actinomycetes strains. However, none has been reported from other bacteria. Here, we report a δ-poly-L-ornithine synthetase from Acinetobacter baumannii, which we name PosA. Surprisingly, structural analysis of the adenylation domain and biochemical assay shows L-ornithine as the substrate for PosA. The product from the enzymatic reaction was purified and identified as poly-L-ornithine composed of 7-12 amino acid units. Chemical labeling of the polymer confirmed the isopeptide linkage of δ-poly-L-ornithine. We examine the biological activity of chemically synthesized 12-mer δ-poly-L-ornithine, illustrating that the polymer may act as an anti-fungal agent. Structures of the isolated adenylation domain from PosA are presented with several diamino acids and biochemical assays identify important substrate binding residues. Structurally-guided genome-mining led to the identification of homologs with different substrate binding residues that could activate additional substrates. A homolog from Bdellovibrionales sp. shows modest activity with L-arginine but not with any diamino acids observed to be substrates for previously examined CHPA synthetases. Our study indicates the possibility that additional CHPAs may be produced by various microbes, supporting the further exploration of uncharacterized natural products.
Collapse
Affiliation(s)
- Ketan D Patel
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA
| | - Andrew M Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, NY, 14203, USA.
| |
Collapse
|
18
|
Zhang K, Kries H. Biomimetic engineering of nonribosomal peptide synthesis. Biochem Soc Trans 2023; 51:1521-1532. [PMID: 37409512 DOI: 10.1042/bst20221264] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/14/2023] [Accepted: 06/16/2023] [Indexed: 07/07/2023]
Abstract
Nonribosomal peptides (NRPs) have gained attention due to their diverse biological activities and potential applications in medicine and agriculture. The natural diversity of NRPs is a result of evolutionary processes that have occurred over millions of years. Recent studies have shed light on the mechanisms by which nonribosomal peptide synthetases (NRPSs) evolve, including gene duplication, recombination, and horizontal transfer. Mimicking natural evolution could be a useful strategy for engineering NRPSs to produce novel compounds with desired properties. Furthermore, the emergence of antibiotic-resistant bacteria has highlighted the urgent need for new drugs, and NRPs represent a promising avenue for drug discovery. This review discusses the engineering potential of NRPSs in light of their evolutionary history.
Collapse
Affiliation(s)
- Kexin Zhang
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI Jena), 07745 Jena, Germany
- Organic Chemistry I, University of Bayreuth, 95440 Bayreuth, Germany
| |
Collapse
|