1
|
Chen YJ, Li YY, Xiao BL, Ma LL, Xu KX, Abdalbage Mohammed Abdalsadeg S, Hong T, Akbar Moosavi-Movahedi A, Yousefi R, Ning YN, Hong J. Electrochemical biosensor based on functional nanomaterials and horseradish peroxidase for the determination of luteolin in peanut shell, honeysuckle and perilla. Bioelectrochemistry 2025; 161:108827. [PMID: 39321497 DOI: 10.1016/j.bioelechem.2024.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/19/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Constructing a biosensor to detect luteolin content accurately is essential, especially considering its specific health benefits at certain concentrations. In this work, the reaction of HRP catalyzed luteolin could be successfully applied in electrocatalytic processes, the oxidation process of electron loss and dehydrogenation occurring on the electrode replaced the hydrogen receptor role of H2O2 in the HRP biocatalytic process. This oxidation reaction had an apparent current response, thus achieving accurate measurement of luteolin. On this biosensor, CTAB was used to disperse MWCNTs, and BSA was used to improve the hydrophobicity of MWCNTs, which was conducive to the subsequent AuNPs fixation of HRP. Three detection methods (LSV, DPV and SWV) for the detection of luteolin were compared and showed that SWV method had a wider linear range (1 × 10-8-2 × 10-5 M) and lower detection limit (8 × 10-10 M). The determination of luteolin in Traditional Chinese Medicine (TCM) by high performance liquid chromatography (HPLC) and biosensor was almost identical. Therefore, this biosensor could successfully replace HPLC in detecting luteolin in TCM.
Collapse
Affiliation(s)
- Yu-Jie Chen
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Yu-Ying Li
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Bao-Lin Xiao
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Lin-Lin Ma
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | - Ke-Xin Xu
- School of Life Sciences, Henan University, Kaifeng 475000, China
| | | | - Tao Hong
- Shool of Fine Arts, Henan University, Kaifeng 475000, China.
| | | | - Reza Yousefi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran 1417614411, Iran
| | - Yan-Na Ning
- Department of Medical Laboratory, Kaifeng Central Hospital, Kaifeng 475000, China
| | - Jun Hong
- School of Life Sciences, Henan University, Kaifeng 475000, China.
| |
Collapse
|
2
|
Tian Q, Li S, Tang Z, Zhang Z, Du D, Zhang X, Niu X, Lin Y. Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges. Adv Healthc Mater 2024:e2401630. [PMID: 39139016 DOI: 10.1002/adhm.202401630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/24/2024] [Indexed: 08/15/2024]
Abstract
As nanoscale materials with the function of catalyzing substrates through enzymatic kinetics, nanozymes are regarded as potential alternatives to natural enzymes. Compared to protein-based enzymes, nanozymes exhibit attractive characteristics of low preparation cost, robust activity, flexible performance adjustment, and versatile functionalization. These advantages endow them with wide use from biochemical sensing and environmental remediation to medical theranostics. Especially in biomedical diagnosis, the feature of catalytic signal amplification provided by nanozymes makes them function as emerging labels for the detection of biomarkers and diseases, with rapid developments observed in recent years. To provide a comprehensive overview of recent progress made in this dynamic field, here an overview of biomedical diagnosis enabled by nanozymes is provided. This review first summarizes the synthesis of nanozyme materials and then discusses the main strategies applied to enhance their catalytic activity and specificity. Subsequently, representative utilization of nanozymes combined with biological elements in disease diagnosis is reviewed, including the detection of biomarkers related to metabolic, cardiovascular, nervous, and digestive diseases as well as cancers. Finally, some development trends in nanozyme-enabled biomedical diagnosis are highlighted, and corresponding challenges are also pointed out, aiming to inspire future efforts to further advance this promising field.
Collapse
Affiliation(s)
- Qingzhen Tian
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Shu Li
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Zheng Tang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Ziyu Zhang
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
| | - Dan Du
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiao Zhang
- School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA, 99164, USA
| | - Xiangheng Niu
- School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, P. R. China
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Yuehe Lin
- School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
3
|
Tung CY, Tsai TT, Chiu PY, Viter R, Ramanavičius A, Yu CJ, Chen CF. Diagnosis of Mycobacterium tuberculosis using palladium-platinum bimetallic nanoparticles combined with paper-based analytical devices. NANOSCALE 2024; 16:5988-5998. [PMID: 38465745 DOI: 10.1039/d3nr05508f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
In this study, we demonstrate that palladium-platinum bimetallic nanoparticles (Pd@Pt NPs) as the nanozyme, combined with a multi-layer paper-based analytical device and DNA hybridization, can successfully detect Mycobacterium tuberculosis. This nanozyme has peroxidase-like properties, which can increase the oxidation rate of the substrate. Compared with horseradish peroxidase, which is widely used in traditional detection, the Michaelis constants of Pd@Pt NPs are fourteen and seventeen times lower than those for 3,3',5,5'-tetramethylbenzidine and H2O2, respectively. To verify the catalytic efficiency of Pd@Pt NPs, this study will execute molecular diagnosis of Mycobacterium tuberculosis. We chose the IS6110 fragment as the target DNA and divided the complementary sequences into the capture DNA and reporter DNA. They were modified on paper and Pd@Pt NPs, respectively, to detect Mycobacterium tuberculosis on a paper-based analytical device. With the above-mentioned method, we can detect target DNA within 15 minutes with a linear range between 0.75 and 10 nM, and a detection limit of 0.216 nM. These results demonstrate that the proposed platform (a DNA-nanozyme integrated paper-based analytical device, dnPAD) can provide sensitive and on-site infection prognosis in areas with insufficient medical resources.
Collapse
Affiliation(s)
- Cheng-Yang Tung
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| | - Tsung-Ting Tsai
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Ping-Yeh Chiu
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
- Department of Orthopaedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Roman Viter
- Institute of Atomic Physics and Spectroscopy, University of Latvia, Jelgavas Street 3, LV-1004 Riga, Latvia
| | - Arũnas Ramanavičius
- State Research Institute Center for Physical and Technological Sciences, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania
| | - Cheng-Ju Yu
- Department of Applied Physics and Chemistry, University of Taipei, Taipei 100, Taiwan.
| | - Chien-Fu Chen
- Institute of Applied Mechanics, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
4
|
Li D, Fan T, Mei X. A comprehensive exploration of the latest innovations for advancements in enhancing selectivity of nanozymes for theranostic nanoplatforms. NANOSCALE 2023; 15:15885-15905. [PMID: 37755133 DOI: 10.1039/d3nr03327a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Nanozymes have captured significant attention as a versatile and promising alternative to natural enzymes in catalytic applications, with wide-ranging implications for both diagnosis and therapy. However, the limited selectivity exhibited by many nanozymes presents challenges to their efficacy in diagnosis and raises concerns regarding their impact on the progression of disease treatments. In this article, we explore the latest innovations aimed at enhancing the selectivity of nanozymes, thereby expanding their applications in theranostic nanoplatforms. We place paramount importance on the critical development of highly selective nanozymes and present innovative strategies that have yielded remarkable outcomes in augmenting selectivities. The strategies encompass enhancements in analyte selectivity by incorporating recognition units, refining activity selectivity through the meticulous control of structural and elemental composition, integrating synergistic materials, fabricating selective nanomaterials, and comprehensively fine-tuning selectivity via approaches such as surface modification, cascade nanozyme systems, and manipulation of external stimuli. Additionally, we propose optimized approaches to propel the further advancement of these tailored nanozymes while considering the limitations associated with existing techniques. Our ultimate objective is to present a comprehensive solution that effectively addresses the limitations attributed to non-selective nanozymes, thus unlocking the full potential of these catalytic systems in the realm of theranostics.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Tuocen Fan
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| | - Xifan Mei
- Jinzhou Medical University, 40 Songpo Rd, Jinzhou 121000, China.
| |
Collapse
|