1
|
Gao L, Wu D, Li S, Li H, Ma D. Graphene-supported MN 4 single-atom catalysts for multifunctional electrocatalysis enabled by axial Fe tetramer coordination. J Colloid Interface Sci 2024; 676:261-271. [PMID: 39029252 DOI: 10.1016/j.jcis.2024.07.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Multifunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) are crucial for development of the key electrochemical energy storage and conversion devices, for which single-atom catalyst (SAC) has present great promises. Very recently, some experimental works showed that structurally well-defined ultra-small transition-metal clusters (such as Fe and Co tetramers, denoted as Fe4 and Co4, respectively), can efficiently modulate the catalytic behavior of SACs by axial coordination. Herein, taking the graphene-supported MN4 SACs as representatives, we theoretically explored the feasibility of realizing multifunctional SACs for ORR, OER and HER by this novel axial coordination engineering. Through extensive first-principles calculations, from 23 candidates, IrN4 decorated with Fe4 (IrN4/Fe4) is identified as the promising trifunctional catalyst with the theoretical overpotential of 0.43, 0.51 and 0.30 V for OER, ORR and HER, respectively. RhN4/Fe4 and CoN4/Fe4 are recognized as potential OER and ORR bifunctional catalysts. In addition, NiN4/Fe4 exhibits the best ORR activity with an overpotential of 0.30 V, far superior to the pristine NiN4 SAC (0.88 V). Electronic structure analyses reveal that the significantly enhanced ORR/OER activity can be ascribed to the orbital and charge redistribution of Ni/Ir active center, resulting from its electronic interaction with Fe4 cluster. This work could stimulate and guide the rational design of graphene-based multifunctional SACs realized by axial coordination of small TM clusters, and provide insights into the modulation mechanism.
Collapse
Affiliation(s)
- Lulu Gao
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China.
| | - Silu Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China; Anhui Province Industrial Generic Technology Research Center for Alumics Materials, School of Physics and Electronic Information, Huaibei Normal University, Huaibei, Anhui 235000, China.
| |
Collapse
|
2
|
Luo W, Liu J, Hu Y, Yan Q. Single and dual-atom catalysts towards electrosynthesis of ammonia and urea: a review. NANOSCALE 2024; 16:20463-20483. [PMID: 39435616 DOI: 10.1039/d4nr02387k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Ammonia and urea represent two important chemicals that have contributed to the rapid development of humanity. However, their industrial production requires harsh conditions, consuming excessive energy and resulting in significant greenhouse gas emission. Therefore, there is growing interest in the electrocatalytic synthesis of ammonia and urea as it can be carried out under ambient conditions. Recently, atomic catalysts (ACs) have gained increased attention for their superior catalytic properties, being able to outperform their micro and nano counterparts. This review examines the advantages and disadvantages of ACs and summarises the advancement of ACs in the electrocatalytic synthesis of ammonia and urea. The focus is on two types of AC - single-atom catalysts (SACs) and diatom catalysts (DACs). SACs offer various advantages, including the 100% atom utilization that allows for low material mass loading, suppression of competitive reactions such as hydrogen evolution reaction (HER), and alternative reaction pathways allowing for efficient synthesis of ammonia and urea. DACs inherit these advantages, possessing further benefits of synergistic effects between the two catalytic centers at close proximity, particularly matching the NN bond for N2 reduction and boosting C-N coupling for urea synthesis. DACs also possess the ability to break the linear scaling relation of adsorption energy of reactants and intermediates, allowing for tuning of intermediate adsorption energies. Finally, possible future research directions using ACs are proposed.
Collapse
Affiliation(s)
- Wenyu Luo
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Yue Hu
- School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore.
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| |
Collapse
|
3
|
Sun Y, Tao L, Wu M, Dastan D, Rehman J, Li L, An B. Multi-atomic loaded C 2N 1 catalysts for CO 2 reduction to CO or formic acid. NANOSCALE 2024; 16:9791-9801. [PMID: 38700428 DOI: 10.1039/d4nr01082e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In recent years, the development of highly active and selective electrocatalysts for the electrochemical reduction of CO2 to produce CO and formic acid has aroused great interest, and can reduce environmental pollution and greenhouse gas emissions. Due to the high utilization of atoms, atom-dispersed catalysts are widely used in CO2 reduction reactions (CO2RRs). Compared with single-atom catalysts (SACs), multi-atom catalysts have more flexible active sites, unique electronic structures and synergistic interatomic interactions, which have great potential in improving the catalytic performance. In this study, we established a single-layer nitrogen-graphene-supported transition metal catalyst (TM-C2N1) based on density functional theory, facilitating the reduction of CO2 to CO or HCOOH with single-atom and multi-atomic catalysts. For the first time, the TM-C2N1 monolayer was systematically screened for its catalytic activity with ab initio molecular dynamics, density of states, and charge density, confirming the stability of the TM-C2N1 catalyst structure. Furthermore, the Gibbs free energy and electronic structure analysis of 3TM-C2N1 revealed excellent catalytic performance for CO and HCOOH in the CO2RR with a lower limiting potential. Importantly, this work highlights the moderate adsorption energy of the intermediate on 3TM-C2N1. It is particularly noteworthy that 3Mo-C2N1 exhibited the best catalytic performance for CO, with a limiting potential (UL) of -0.62 V, while 3Ti-C2N1 showed the best performance for HCOOH, with a corresponding UL of -0.18 V. Additionally, 3TM-C2N1 significantly inhibited competitive hydrogen evolution reactions. We emphasize the crucial role of the d-band center in determining products, as well as the activity and selectivity of triple-atom catalysts in the CO2RR. This theoretical research not only advances our understanding of multi-atomic catalysts, but also offers new avenues for promoting sustainable CO2 conversion.
Collapse
Affiliation(s)
- Yimeng Sun
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Lin Tao
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Mingjie Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Davoud Dastan
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Javed Rehman
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Lixiang Li
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| | - Baigang An
- School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China.
| |
Collapse
|
4
|
Li H, Wu D, Wu J, Lv W, Duan Z, Ma D. Graphene-based iron single-atom catalysts for electrocatalytic nitric oxide reduction: a first-principles study. NANOSCALE 2024; 16:7058-7067. [PMID: 38445992 DOI: 10.1039/d4nr00028e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The electrocatalytic NO reduction reaction (NORR) emerges as an intriguing strategy to convert harmful NO into valuable NH3. Due to their unique intrinsic properties, graphene-based Fe single-atom catalysts (SACs) have gained considerable attention in electrocatalysis, while their potential for NORR and the underlying mechanism remain to be explored. Herein, using constant-potential density functional theory calculations, we systematically investigated the electrocatalytic NORR on the graphene-based Fe SACs. By changing the local coordination environment of Fe single atoms, 26 systems were constructed. Theoretical results show that, among these systems, the Fe SAC coordinated with four pyrrole N atoms and that co-coordinated with three pyridine N atoms and one O atom exhibit excellent NORR activity with low limiting potentials of -0.26 and -0.33 V, respectively, as well as have high selectivity toward NH3 by inhibiting the formation of byproducts, especially under applied potential. Furthermore, electronic structure analyses indicate that NO molecules can be effectively adsorbed and activated via the electron "donation-backdonation" mechanism. In particular, the d-band center of the Fe SACs was identified as an efficient catalytic activity descriptor for NORR. Our work could stimulate and guide the experimental exploration of graphene-based Fe SACs for efficient NORR toward NH3 under ambient conditions.
Collapse
Affiliation(s)
- Haobo Li
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Donghai Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, China
| | - Jiarui Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Wenjing Lv
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| | - Zhiyao Duan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Dongwei Ma
- Key Laboratory for Special Functional Materials of Ministry of Education, and School of Materials Science and Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
5
|
Dong H, Sun H, Xing G, Liu S, Duan X, Liu J. First-Principles Study of Bimetallic Pairs Embedded on Graphene Co-Doped with N and O for N 2 Electroreduction. Molecules 2024; 29:779. [PMID: 38398531 PMCID: PMC10891683 DOI: 10.3390/molecules29040779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
The electrocatalytic nitrogen reduction reaction (NRR) is considered a viable alternative to the Haber-Bosch process for ammonia synthesis, and the design of highly active and selective catalysts is crucial for the industrialization of the NRR. Dual-atom catalysts (DACs) with dual active sites offer flexible active sites and synergistic effects between atoms, providing more possibilities for the tuning of catalytic performance. In this study, we designed 48 graphene-based DACs with N4O2 coordination (MM'@N4O2-G) using density functional theory. Through a series of screening strategies, we explored the reaction mechanisms of the NRR for eight catalysts in depth and revealed the "acceptance-donation" mechanism between the active sites and the N2 molecules through electronic structure analysis. The study found that the limiting potential of the catalysts exhibited a volcano-shaped relationship with the d-band center of the active sites, indicating that the synergistic effect between the bimetallic components can regulate the d-band center position of the active metal M, thereby controlling the reaction activity. Furthermore, we investigated the selectivity of the eight DACs and identified five potential NRR catalysts. Among them, MoCo@N4O2-G showed the best NRR performance, with a limiting potential of -0.20 V. This study provides theoretical insights for the design and development of efficient NRR electrocatalysts.
Collapse
Affiliation(s)
| | | | | | | | - Xuemei Duan
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China; (H.D.); (H.S.); (G.X.); (S.L.)
| | - Jingyao Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China; (H.D.); (H.S.); (G.X.); (S.L.)
| |
Collapse
|
6
|
Nie J, Li Y, Gao D, Fang Y, Lin J, Tang C, Guo Z. Carbon doped hexagonal boron nitride as an efficient metal-free catalyst for NO capture and reduction. Phys Chem Chem Phys 2024; 26:2539-2547. [PMID: 38170810 DOI: 10.1039/d3cp04718k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The electrochemical NO reduction reaction (NORR) towards NH3 is considered a promising strategy to cope with both NO removal and NH3 production. Currently, the research on NORR electrocatalysts mainly focuses on metal-based catalysts, while metal-free catalysts are quite scarce. In this work, we have systematically investigated the properties of pristine and C/O doped h-BN for efficient NO capture and reduction. Our results reveal that the basal plane of pristine h-BN is inert to the adsorption of NO, while doping C or O can significantly enhance the NO capture abilities of h-BN. Then, we highlight that C-doped h-BN exhibits excellent NORR catalytic performance with a relatively low limiting potential of -0.28 V. Further analysis shows that the suitable adsorption strength of NO on the C-doped h-BN surface is the prime reason for its excellent NO reduction activity, which is shown to be due to appropriate electronic interactions between the active site and NO. Last but not least, the catalytic selectivity of h-BN towards the NORR is confirmed by inhibiting the competing hydrogen evolution reaction. Our findings not only provide deeper insight into the essential effect of element doping on the catalytic activities of h-BN, but also propose general design principles for high-performance metal-free NORR electrocatalysts.
Collapse
Affiliation(s)
- Jiali Nie
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Ying Li
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Dongyue Gao
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Yi Fang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Jing Lin
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Chengchun Tang
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| | - Zhonglu Guo
- Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, China.
| |
Collapse
|
7
|
Luo F, Guo L. Bimetallic synergistic catalysts based on two-dimensional carbon-rich conjugated frameworks for nitrate electrocatalytic reduction to ammonia: catalyst screening and mechanism insights. NANOTECHNOLOGY 2024; 35:125201. [PMID: 38100833 DOI: 10.1088/1361-6528/ad1649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/15/2023] [Indexed: 12/17/2023]
Abstract
The discovery of the 'two birds, one stone' electrochemical nitrate reduction reaction (NO3RR) allows for the removal of harmful NO3-pollutants as well as the production of economically beneficial ammonia (NH3). However, current understanding of the catalytic mechanism of NO3RR is not enough, and this research is still challenging. To determine the mechanism needed to create efficient electrocatalysts, we thoroughly examined the catalytic activity of molybdenum-based diatomic catalysts (DACs) anchored on two-dimensional carbon-rich conjugated frameworks (2D CCFs) for NO3RR. Among the 23 candidate materials, after a four-step screening method and detailed mechanism studies, we discovered that NO3RR can efficiently generate NH3by following the N-end pathway on the MoTi-Pc, MoMn-Pc, and MoNb-Pc, with limiting potential of -0.33 V, -0.13 V, and -0.38 V, respectively. The activity of NO3RR can be attributed to the synergistic effect of the TM1-TM2dimer d orbital coupling to the anti-bonding orbital of NO3-. Additionally, high hybridization between the Mo-4d, TM-3d(4d), and NO3--2p orbitals on the MoTMs-Pc DACs can speed up the flow of electrons from the Mo-TM dual-site to NO3-. The research presented here paves the way for the reasonable design of effective NO3RR catalysts and offers a theoretical basis for experimental research.
Collapse
Affiliation(s)
- FengLing Luo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| | - Ling Guo
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials, Ministry of Education, The School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030000, People's Republic of China
| |
Collapse
|
8
|
Liu B, Yu Y, Zhang G, Chu K. An Amorphization-Engineered Catalyst for Electrocatalytic Reduction of Nitric Oxide to Ammonia. Inorg Chem 2023; 62:20923-20928. [PMID: 38059925 DOI: 10.1021/acs.inorgchem.3c03986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Electrocatalytic NO-to-NH3 conversion (NORR) provides a fascinating route toward the eco-friendly and valuable production of NH3. In this study, amorphous FeS2 (a-FeS2) is first demonstrated as a high-efficiency catalyst for the NORR, showing a maximum FENH3 of 92.5% with a corresponding NH3 yield rate of 227.1 μmol h-1 cm-2, outperforming most NORR catalysts reported earlier. Experimental measurements combined with theoretical computations clarify that the exceptional NORR activity of a-FeS2 originates from the amorphization-induced upshift of the d-band center to promote the NO activation and NO-to-NH3 hydrogenation energetics.
Collapse
Affiliation(s)
- Baixing Liu
- School of Bailie Mechanical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Youjun Yu
- School of Bailie Mechanical Engineering, Lanzhou City University, Lanzhou 730070, China
| | - Guike Zhang
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|