1
|
Porter J, Noble AR, Signoret N, Fascione MA, Miller GJ. Exploring a Gemcitabine-Glucose Hybrid as a Glycoconjugate Prodrug. ACS OMEGA 2024; 9:31703-31713. [PMID: 39072123 PMCID: PMC11270703 DOI: 10.1021/acsomega.4c02417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/30/2024]
Abstract
Nucleoside analogues are established treatments for cancer and viral infection. Gemcitabine is a commonly employed nucleoside analogue displaying anticancer properties against a range of tumor types but is rapidly inactivated in vivo. Efforts to bolster its pharmaceutical profile include investigating prodrug forms. Herein, we explore the synthesis of a novel glucose-gemcitabine glycoconjugate, targeting uptake via glucose transport. We select a redox-reactive disulfide linker for conjugation of gemcitabine (through N4-cytosine) with glucose. Evaluation of this glycoconjugate reveals increased toxicity against androgen insensitive PC3 prostate cancer cells compared to LNCaP (which have lower levels of glucose transporter GLUT1). These preliminary results suggest that glycoconjugation of nucleosides may be an effective approach to targeting cells which display increased uptake and metabolism of glucose.
Collapse
Affiliation(s)
- Jack Porter
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| | - Amanda R. Noble
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Nathalie Signoret
- Hull
York Medical School, University of York, Heslington, York YO10
5DD, U.K.
| | - Martin A. Fascione
- Department
of Chemistry, University of York, Heslington, York YO10
5DD, U.K.
| | - Gavin J. Miller
- Centre
for Glycoscience and School of Chemical and Physical Sciences, Keele University, Keele, Staffordshire ST5 5BG, United Kingdom
| |
Collapse
|
2
|
Li XL, Wang MF, Zeng LZ, Li GK, Zhao RY, Liu FD, Li Y, Yan YF, Liu Q, Li Z, Zhang H, Ren X, Gao F. Bithiophene-Functionalized Infrared Two-Photon Absorption Metal Complexes as Single-Molecule Platforms for Synergistic Photodynamic, Photothermal, and Chemotherapy. Angew Chem Int Ed Engl 2024; 63:e202402028. [PMID: 38656658 DOI: 10.1002/anie.202402028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
A planar conjugated ligand functionalized with bithiophene and its Ru(II), Os(II), and Ir(III) complexes have been constructed as single-molecule platform for synergistic photodynamic, photothermal, and chemotherapy. The complexes have significant two-photon absorption at 808 nm and remarkable singlet oxygen and superoxide anion production in aqueous solution and cells when exposed to 808 nm infrared irradiation. The most potent Ru(II) complex Ru7 enters tumor cells via the rare macropinocytosis, locates in both nuclei and mitochondria, and regulates DNA-related chemotherapeutic mechanisms intranuclearly including DNA topoisomerase and RNA polymerase inhibition and their synergistic effects with photoactivated apoptosis, ferroptosis and DNA cleavage. Ru7 exhibits high efficacy in vivo for malignant melanoma and cisplatin-resistant non-small cell lung cancer tumors, with a 100 % survival rate of mice, low toxicity to normal cells and low residual rate. Such an infrared two-photon activatable metal complex may contribute to a new generation of single-molecule-based integrated diagnosis and treatment platform to address drug resistance in clinical practice and phototherapy for large, deeply located solid tumors.
Collapse
Affiliation(s)
- Xue-Lian Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Meng-Fan Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Li-Zhen Zeng
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Guo-Kui Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Run-Yu Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Fu-Dan Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yun Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Yu-Fei Yan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Qishuai Liu
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Zhao Li
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Xiaoxia Ren
- Animal Research and Resource Center, School of Life Sciences, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| | - Feng Gao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Pharmacy, Yunnan University, East Outer Ring Road, Kunming, 650500, P. R. China
| |
Collapse
|
3
|
Sun Z, Han J, Xu J, Song W, Cui Y, Liu Y, Yang L, Meng X, Huang J, Gao Q, Liu S. Discovery of the Next-Generation Platinum-Based Anticancer Agents for Combating Oxaliplatin-Induced Drug Resistance. J Med Chem 2024; 67:10190-10210. [PMID: 38845105 DOI: 10.1021/acs.jmedchem.4c00366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Oxaliplatin-based chemotherapy has proven to be one of the most effective treatments for advanced or metastatic colorectal cancer. However, increasing clinical resistance to oxaliplatin poses unprecedented challenges for both patients and clinicians. Despite extensive efforts to combat this issue, to date, no new molecules have been discovered that can successfully replace oxaliplatin. With the aim of developing a new generation of Pt(II)-based anticancer agents in response to the challenges of oxaliplatin-induced drug resistance, we performed a systematic screening of new Pt(II)-complexes with a quantitative structure-activity relationship (QSAR) study based on their antiresistance activity against oxaliplatin-resistant colon cancer cells. The results revealed that both the structure and chirality of the chelating ligand had a significant impact on the antiresistance properties of the Pt(II)-complexes. Our study culminated in the identification of chiral R-binaphthyldiamine-ligated Pt(II)-malonatoglycoconjugates that can completely counteract oxaliplatin resistance with excellent in vitro and in vivo potency.
Collapse
Affiliation(s)
- Ziru Sun
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jianbin Han
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Jun Xu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Weijie Song
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, West Huanhu Road, Hexi District, Tianjin 300060, P. R. China
| | - Yujun Cui
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Transplantation Center, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, Tianjin 300192, P. R. China
| | - Yang Liu
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Liu Yang
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| | - Xiaoqi Meng
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Jie Huang
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Qingzhi Gao
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
| | - Shengnan Liu
- School of Pharmaceutical Science and Technology, Institute of Molecular Plus, Frontiers Science Center for Synthetic Biology (Ministry of Education of China), Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- Department of Biology, Tianjin Key Laboratory of Innovative Drugs Targeting the Central Nervous System, Gudui BioPharma Technology Inc., 5 Lanyuan Road, Huayuan Industrial Park, Tianjin 300384, P. R. China
| |
Collapse
|
4
|
Marotta C, Cirri D, Kanavos I, Ronga L, Lobinski R, Funaioli T, Giacomelli C, Barresi E, Trincavelli ML, Marzo T, Pratesi A. Oxaliplatin(IV) Prodrugs Functionalized with Gemcitabine and Capecitabine Induce Blockage of Colorectal Cancer Cell Growth-An Investigation of the Activation Mechanism and Their Nanoformulation. Pharmaceutics 2024; 16:278. [PMID: 38399332 PMCID: PMC10892879 DOI: 10.3390/pharmaceutics16020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The use of platinum-based anticancer drugs, such as cisplatin, oxaliplatin, and carboplatin, is a common frontline option in cancer management, but they have debilitating side effects and can lead to drug resistance. Combination therapy with other chemotherapeutic agents, such as capecitabine and gemcitabine, has been explored. One approach to overcome these limitations is the modification of traditional Pt(II) drugs to obtain new molecules with an improved pharmacological profile, such as Pt(IV) prodrugs. The design, synthesis, and characterization of two novel Pt(IV) prodrugs based on oxaliplatin bearing the anticancer drugs gemcitabine or capecitabine in the axial positions have been reported. These complexes were able to dissociate into their constituents to promote cell death and induce apoptosis and cell cycle blockade in a representative colorectal cancer cell model. Specifically, the complex bearing gemcitabine resulted in being the most active on the HCT116 colorectal cancer cell line with an IC50 value of 0.49 ± 0.04. A pilot study on the encapsulation of these complexes in biocompatible PLGA-PEG nanoparticles is also included to confirm the retention of the pharmacological properties and cellular drug uptake, opening up to the possible delivery of the studied complexes through their nanoformulation.
Collapse
Affiliation(s)
- Carlo Marotta
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (C.M.); (T.F.)
| | - Damiano Cirri
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (C.M.); (T.F.)
| | - Ioannis Kanavos
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), Pau University, E2S UPPA, CNRS, 64053 Pau, France; (I.K.); (L.R.); (R.L.)
| | - Luisa Ronga
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), Pau University, E2S UPPA, CNRS, 64053 Pau, France; (I.K.); (L.R.); (R.L.)
| | - Ryszard Lobinski
- Institute of Analytical and Physical Chemistry for the Environment and Materials (IPREM-UMR 5254), Pau University, E2S UPPA, CNRS, 64053 Pau, France; (I.K.); (L.R.); (R.L.)
| | - Tiziana Funaioli
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (C.M.); (T.F.)
| | - Chiara Giacomelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (E.B.); (M.L.T.); (T.M.)
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (E.B.); (M.L.T.); (T.M.)
| | | | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (C.G.); (E.B.); (M.L.T.); (T.M.)
| | - Alessandro Pratesi
- Department of Chemistry and Industrial Chemistry, University of Pisa, 56124 Pisa, Italy; (C.M.); (T.F.)
| |
Collapse
|